286 resultados para atomic potential
Resumo:
We report the direct observation of electrochemical potential and local transport field variations near scatterers like grain boundaries, triple points, and voids in thin platinum films studied by scanning tunneling potentiometry. The field is highest at a void, followed by a triple point and a grain boundary. The local transport field near a void can even be four orders of magnitude higher than the macroscopic field, indicating that the void is the most likely place for an electromigration induced failure. The field build up for a particular type of scatterer depends on the grain connectivity. We estimate an average grain boundary reflection coefficient for the film from the temperature dependence of its resistivity.
Resumo:
A new heterocycle, namely 2-(furyl)-3-(furfuralimino)-1,2-dihydroquinazolin-4(3H)-one (ffdq) was formed by the ondensation of 2-aminobenzoylhydrazide with furfural and characterized by physico-chemical, spectroscopic, and single crystal X-ray diffraction studies. A series of complexes of ffdq have been synthesized and characterized by physico-chemical, spectroscopic, and thermal studies. According to the i.r. and 1H-n.m.r. spectra ffdq behaves as a bidentate ligand coordinating through quinazoline oxygen and azomethine nitrogen. The FAB-mass spectrum of the Cd(II) complex indicates the monomeric nature of this complex. The X-band e.p.r. spectrum of the Cu(II) complex and thermal stabilities of the Co(II) and Ni(II) complexes are discussed.
Resumo:
The conventional procedure of determining the surface potential of clay platelet and the variation of potential with distance is lengthy and time consuming. Simplified graphical procedures using Gouy theory have been developed and presented. The new procedures are simple, accurate and very much less time consuming.
Resumo:
The relations for the inner layer potential &fference (E) in the presence of adsorbed orgamc molecules are derived for three hterarchlcal models, m terms of molecular constants like permanent &pole moments, polarlzablhtles, etc It is shown how the experimentally observed patterns of the E vs 0 plots (hnear m all ranges of $\sigma^M$, non-linear in one or both regions of o M, etc ) can be understood in a serm-quantltatlve manner from the simplest model in our hierarchy, viz the two-state site panty version Two-state multi-site and three-state (sxte panty) models are also analysed and the slope (3E/80),,M tabulated for these also The results for the Esm-Markov effect are denved for all the models and compared with the earlier result of Parsons. A comparison with the GSL phenomenologlcal equation is presented and its molecular basis, as well as the hmltatlons, is analysed. In partxcular, two-state multa-slte and three-state (site panty) models yield E-o M relations that are more general than the "umfied" GSL equation The posslblhty of vaewlng the compact layer as a "composite medium" with an "effective dlelectnc constant" and obtaimng novel phenomenological descnptions IS also indicated.
Resumo:
The immune response against Salmonella is multi-faceted involving both the innate and the adaptive immune system. The characterization of specific Salmonella antigens inducing immune response could critically contribute to the development of epitope based vaccines for Salmonella. We have tried to identify a protective T cell epitope(s) of Salmonella, as cell mediated immunity conferred by CD8+ T cells is the most crucial subset conferring protective immunity against Salmonella. It being a proven fact that secreted proteins are better in inducing cell mediated immunity than cell surface and cytosolic antigens, we have analyzed all the genbank annotated Salmonella pathogenicity island 1 and 2 secreted proteins of Salmonella enterica serovar Typhimurium (S. typhimurium) and S. enterica serovar Typhi (S. typhi). They were subjected to BIMAS and SYFPEITHI analysis to map MHC-I and MHC-II binding epitopes. The huge profile of possible T cell epitopes obtained from the two classes of secreted proteins were tabulated and using a scoring system that considers the binding affinity and promiscuity of binding to more than one allele, SopB and SifB were chosen for experimental confirmation in murine immunization model. The entire SopB and SifB genes were cloned into DNA vaccine vectors and were administered along with live attenuated Salmonella and it was found that SopB vaccination reduced the bacterial burden of organs by about 5-fold on day 4 and day 8 after challenge with virulent Salmonella and proved to be a more efficient vaccination strategy than live attenuated bacteria alone.
Resumo:
Graphene oxide (GO) is assembled on a gold substrate by a layer-by-layer technique using a self-assembled cystamine monolayer. The negatively charged GO platelets are attached to the positively charged cystamine monolayer through electrostatic interactions. Subsequently, it is shown that the GO can be reduced electrochemically using applied DC bias by scanning the potential from 0 to -1 V vs a saturated calomel electrode in an aqueous electrolyte. The GO and reduced graphene oxide (RGO) are characterized by Raman spectroscopy and atomic force microscopy (AFM). A clear shift of the G band from 1610 cm-1 of GO to 1585 cm-1 of RGO is observed. The electrochemical reduction is followed in situ by micro Raman spectroscopy by carrying out Raman spectroscopic studies during the application of DC bias. The GO and RGO films have been characterized by conductive AFM that shows an increase in the current flow by at least 3 orders of magnitude after reduction. The electrochemical method of reducing GO may open up another way of controlling the reduction of GO and the extent of reduction to obtain highly conducting graphene on electrode materials.
Resumo:
The atomic hydrogen gas (H I) disk in the outer region (beyond similar to 10 kpc from the center) of Milky Way can provide valuable information about the structure of the dark matter halo. The recent three-dimensional thickness map of the outer H I disk from the all sky 21 cm line Leiden/Argentine/Bonn survey, gives us a unique opportunity to investigate the structure of the dark matter halo of Milky Way in great detail. A striking feature of this new survey is the north-south (N-S) asymmetry in the thickness map of the atomic hydrogen gas. Assuming vertical hydrostatic equilibrium under the total potential of the Galaxy, we derive the model thickness map of the H I gas. We show that simple axisymmetric halo models, such as softened isothermal halo (producing a flat rotation curve with V-c similar to 220 km s(-1)) or any halo with density falling faster than the isothermal one, are not able to explain the observed radial variation of the gas thickness. We also show that such axisymmetric halos along with different H I velocity dispersion in the two halves, cannot explain the observed asymmetry in the thickness map. Amongst the nonaxisymmetric models, it is shown that a purely lopsided (m = 1, first harmonic) dark matter halo with reasonable H I velocity dispersion fails to explain the N-S asymmetry satisfactorily. However, we show that by superposing a second harmonic (m = 2) out of phase onto a purely lopsided halo, e. g., our best fit and more acceptable model A (with parameters epsilon(1)(h) = 0.2, epsilon(2)(h) = 0.18, and sigma(H I) = 8.5 km s(-1)) can provide an excellent fit to the observation and reproduce the N-S asymmetry naturally. The emerging picture of the asymmetric dark matter halo is supported by the. cold dark matter halos formed in the cosmological N-body simulation.
Resumo:
Arylalkylcyclopropenethiones undergo highly regioselective photochemical a-cleavage via thioketene carbene intermediates, giving rise to products derived from the less stabilized carbene. UHF MIND0/3 calculations provide an insight into this unexpected regioselectivity. The nx* triplet of cyclopropenethione is calculated to have a highly unsymmetrical geometry with an elongated C-C bond, a delocalized thiaaUyl fragment, and a pyramidal radicaloid carbon (which eventually becomes the carbene center). From this molecular electronic structure, aryl group stabilization is expected to be more effective at the thiaallyl group rather than at the pyramidal radical center. Thus, the stability of the substituted triplet thione rather than that of the thioketene carbene determines the preferred regiochemistry of cleavage. The unusual structure of the cyclopropenethione triplet is suggested to be related to one of the Jahn-Teller distorted forms of the cyclopropenyl radical. An alternative symmetrical structure is adopted by the corresponding triplet of cyclopropenone, partly accounting for its differing photobehavior. A similar structural dichotomy is demonstrated for the corresponding radical anions as well.
Resumo:
Self-contained Non-Equilibrium Molecular Dynamics (NEMD) simulations using Lennard-Jones potentials were performed to identify the origin and mechanisms of atomic scale interfacial behavior between sliding metals. The mixing sequence and velocity profiles were compared via MD simulations for three cases, viz.: sell-mated, similar and hard-softvcrystal pairs. The results showed shear instability, atomic scale mixing, and generation of eddies at the sliding interface. Vorticity at the interface suggests that atomic flow during sliding is similar to fluid flow under Kelvin-Helmholtz instability and this is supported by velocity profiles from the simulations. The initial step-function velocity profile spreads during sliding. However the velocity profile does not change much at later stages of the simulation and it eventually stops spreading. The steady state friction coefficient during simulation was monitored as a function of sliding velocity. Frictional behavior can be explained on the basis of plastic deformation and adiabatic effects. The mixing layer growth kinetics was also investigated.
Resumo:
We analyze recent experimental results of Sundström and Gillbro by using the theory of Bagchi, Fleming and Oxtoby. The experimental results are in good agreement with this theory, but not with the earlier theory of Förster and Hoffmann. By fitting the new experimental results to the theory, we obtain approximate estimates of the frequency of the excited surface (assumed harmonic) and the width of the sink function.
Resumo:
The technology scene in India is at one and the same time promising, frustrating and fascinating. Three broad areas in technology development can be distinguished. The first is relatively small scale; it is typified by the absorption of products of the industrial revolution into the repertoire of the Indian artisan and craftsman, examples being diesel engines from Kolhapur and centrifugal pumps from Coimbatore. The second class is essentially 'state technology', developed at public expense by national commissions: agriculture, atomic energy and space are examples. There is a vast third area in both private and public sector, covering products for the urban consumer and the state (e.g. r defence); this area has largely remained colonial. The factors affecting the three areas of technology are described and analysed from the point of view of an Indian scientistengineer; and it is concluded that the enormous potential of the country's human and mat.erial resources is not only unrealized, but even unrecognized as yet.
Resumo:
We report a multilayer film of poly(vinyl alcohol) (PVA)-borate complex and chitosan by using a layer-by-layer approach. PVA is an uncharged polymer, but hydroxyl functional groups of PVA can be crosslinked by using borax as a cross-linking agent. As a result electrostatic charges and intra- and interchain cross-links are introduced in the PVA chain and provide physically cross-linked networks. The PVA-borate was then deposited on a flat Substrate as well as on colloidal particles with chitosan as an oppositely charged polyelectrolyte. Quartz crystal microbalance. scanning electron microscopy, and atomic force microscopy were used to follow the growth of thin film oil flat substrate. Analogous experiments were performed on melamine formaldehyde colloidal particles (3-3.5 mu m) to quantify the process for the preparation of hollow rnicrocapsules. Removal of the core in 0.1 N HCI results in hollow microcapsules. Characterization of microcapsules by transmission electron microscopy revealed formation of stable microcapsules. Further, self-assembly of PVA-borate/chitosan was loaded with the anticancer drug doxorubicin, and release rates were determined at different pH Values to highlight the drug delivery potential of this system.
Resumo:
An estimate of the irrigation potential over and above the existing utilization was made based on the ground water potential in the Vedavati river basin. The estimate is based on assumed crops and cropping patterns as per existing practice in the various taluks of the basin. Irrigation potential was estimated talukwise based on the available ground water potential identified from the simulation study. It is estimated that 84,100 hectares of additional land can be brought under irrigation from ground water in the entire basin.
Resumo:
Analytical expressions for the corrections to duality are obtained for nonsingular potentials, and are found to be small numerically. An alternative consistent way of energy smoothing, developed by Strutinsky, is elucidated. This may be of use even when potential models are not valid.
Resumo:
Porphyrins appended with crown ether moieties function as efficient uncouplesrs of oxidative phorphorylation in rat liver mitochondria. Permeation of these highly organized porphyrins decrease the respiratory coefficient index (RCI) values. Lowering of the RCI values parallels the number of K+ chelating crown ether groups attached to the porphyrins. The inhibitory effect upon the oxidative phorphorylation reaction depends on the nature of divalent metal ions, VO, Co, Cu and Zn in the porphyrin cavity and related to their relative tendency to complex intracellular K+ ions.