73 resultados para Unmanned Aerial Vehicle (UAV)
Resumo:
This paper presents a robust fixed order H2controller design using strengthened discrete optimal projection equations, which approximate the first order necessary optimality condition. The novelty of this work is the application of the robust H2controller to a micro aerial vehicle named Sarika2 developed in house. The controller is designed in discrete domain for the lateral dynamics of Sarika2 in the presence of low frequency atmospheric turbulence (gust) and high frequency sensor noise. The design specification includes simultaneous stabilization, disturbance rejection and noise attenuation over the entire flight envelope of the vehicle. The resulting controller performance is comprehensively analyzed by means of simulation
Resumo:
This article addresses the problem of determining the shortest path that connects a given initial configuration (position, heading angle, and flight path angle) to a given rectilinear or a circular path in three-dimensional space for a constant speed and turn-rate constrained aerial vehicle. The final path is assumed to be located relatively far from the starting point. Due to its simplicity and low computational requirements the algorithm can be implemented on a fixed-wing type unmanned air vehicle in real time in missions where the final path may change dynamically. As wind has a very significant effect on the flight of small aerial vehicles, the method of optimal path planning is extended to meet the same objective in the presence of wind comparable to the speed of the aerial vehicles. But, if the path to be followed is closer to the initial point, an off-line method based on multiple shooting, in combination with a direct transcription technique, is used to obtain the optimal solution. Optimal paths are generated for a variety of cases to show the efficiency of the algorithm. Simulations are presented to demonstrate tracking results using a 6-degrees-of-freedom model of an unmanned air vehicle.
Resumo:
In this paper, the approach for assigning cooperative communication of Uninhabited Aerial Vehicles (UAV) to perform multiple tasks on multiple targets is posed as a combinatorial optimization problem. The multiple task such as classification, attack and verification of target using UAV is employed using nature inspired techniques such as Artificial Immune System (AIS), Particle Swarm Optimization (PSO) and Virtual Bee Algorithm (VBA). The nature inspired techniques have an advantage over classical combinatorial optimization methods like prohibitive computational complexity to solve this NP-hard problem. Using the algorithms we find the best sequence in which to attack and destroy the targets while minimizing the total distance traveled or the maximum distance traveled by an UAV. The performance analysis of the UAV to classify, attack and verify the target is evaluated using AIS, PSO and VBA.
Resumo:
In this article, the problem of two Unmanned Aerial Vehicles (UAVs) cooperatively searching an unknown region is addressed. The search region is discretized into hexagonal cells and each cell is assumed to possess an uncertainty value. The UAVs have to cooperatively search these cells taking limited endurance, sensor and communication range constraints into account. Due to limited endurance, the UAVs need to return to the base station for refuelling and also need to select a base station when multiple base stations are present. This article proposes a route planning algorithm that takes endurance time constraints into account and uses game theoretical strategies to reduce the uncertainty. The route planning algorithm selects only those cells that ensure the agent will return to any one of the available bases. A set of paths are formed using these cells which the game theoretical strategies use to select a path that yields maximum uncertainty reduction. We explore non-cooperative Nash, cooperative and security strategies from game theory to enhance the search effectiveness. Monte-Carlo simulations are carried out which show the superiority of the game theoretical strategies over greedy strategy for different look ahead step length paths. Within the game theoretical strategies, non-cooperative Nash and cooperative strategy perform similarly in an ideal case, but Nash strategy performs better than the cooperative strategy when the perceived information is different. We also propose a heuristic based on partitioning of the search space into sectors to reduce computational overhead without performance degradation.
Resumo:
This paper addresses the problem of determining an optimal (shortest) path in three dimensional space for a constant speed and turn-rate constrained aerial vehicle, that would enable the vehicle to converge to a rectilinear path, starting from any arbitrary initial position and orientation. Based on 3D geometry, we propose an optimal and also a suboptimal path planning approach. Unlike the existing numerical methods which are computationally intensive, this optimal geometrical method generates an optimal solution in lesser time. The suboptimal solution approach is comparatively more efficient and gives a solution that is very close to the optimal one. Due to its simplicity and low computational requirements this approach can be implemented on an aerial vehicle with constrained turn radius to reach a straight line with a prescribed orientation as required in several applications. But, if the distance between the initial point and the straight line to be followed along the vertical axis is high, then the generated path may not be flyable for an aerial vehicle with limited range of flight path angle and we resort to a numerical method for obtaining the optimal solution. The numerical method used here for simulation is based on multiple shooting and is found to be comparatively more efficient than other methods for solving such two point boundary value problem.
Resumo:
In this paper a generalisation of the Voronoi partition is used for locational optimisation of facilities having different service capabilities and limited range or reach. The facilities can be stationary, such as base stations in a cellular network, hospitals, schools, etc., or mobile units, such as multiple unmanned aerial vehicles, automated guided vehicles, etc., carrying sensors, or mobile units carrying relief personnel and materials. An objective function for optimal deployment of the facilities is formulated, and its critical points are determined. The locally optimal deployment is shown to be a generalised centroidal Voronoi configuration in which the facilities are located at the centroids of the corresponding generalised Voronoi cells. The problem is formulated for more general mobile facilities, and formal results on the stability, convergence and spatial distribution of the proposed control laws responsible for the motion of the agents carrying facilities, under some constraints on the agents' speed and limit on the sensor range, are provided. The theoretical results are supported with illustrative simulation results.
Resumo:
The Variational Asymptotic Method (VAM) is used for modeling a coupled non-linear electromechanical problem finding applications in aircrafts and Micro Aerial Vehicle (MAV) development. VAM coupled with geometrically exact kinematics forms a powerful tool for analyzing a complex nonlinear phenomena as shown previously by many in the literature 3 - 7] for various challenging problems like modeling of an initially twisted helicopter rotor blades, matrix crack propagation in a composite, modeling of hyper elastic plates and various multi-physics problems. The problem consists of design and analysis of a piezocomposite laminate applied with electrical voltage(s) which can induce direct and planar distributed shear stresses and strains in the structure. The deformations are large and conventional beam theories are inappropriate for the analysis. The behavior of an elastic body is completely understood by its energy. This energy must be integrated over the cross-sectional area to obtain the 1-D behavior as is typical in a beam analysis. VAM can be used efficiently to approximate 3-D strain energy as closely as possible. To perform this simplification, VAM makes use of thickness to width, width to length, width multiplied by initial twist and strain as small parameters embedded in the problem definition and provides a way to approach the exact solution asymptotically. In this work, above mentioned electromechanical problem is modeled using VAM which breaks down the 3-D elasticity problem into two parts, namely a 2-D non-linear cross-sectional analysis and a 1-D non-linear analysis, along the reference curve. The recovery relations obtained as a by-product in the cross-sectional analysis earlier are used to obtain 3-D stresses, displacements and velocity contours. The piezo-composite laminate which is chosen for an initial phase of computational modeling is made up of commercially available Macro Fiber Composites (MFCs) stacked together in an arbitrary lay-up and applied with electrical voltages for actuation. The expressions of sectional forces and moments as obtained from cross-sectional analysis in closed-form show the electro-mechanical coupling and relative contribution of electric field in individual layers of the piezo-composite laminate. The spatial and temporal constitutive law as obtained from the cross-sectional analysis are substituted into 1-D fully intrinsic, geometrically exact equilibrium equations of motion and 1-D intrinsic kinematical equations to solve for all 1-D generalized variables as function of time and an along the reference curve co-ordinate, x(1).
Resumo:
To investigate the use of centre of gravity location on reducing cyclic pitch control for helicopter UAV's (unmanned air vehicles) and MAV's (micro air vehicles). Low cyclic pitch is a necessity to implement the swashplateless rotor concept using trailing edge flaps or active twist using current generation low authority piezoceramic actuators. Design/methodology/approach – An aeroelastic analysis of the helicopter rotor with elastic blades is used to perform parametric and sensitivity studies of the effects of longitudinal and lateral center of gravity (cg) movements on the main rotor cyclic pitch. An optimization approach is then used to find cg locations which reduce the cyclic pitch at a given forward speed. Findings – It is found that the longitudinal cyclic pitch and lateral cyclic pitch can be driven to zero at a given forward speed by shifting the cg forward and to the port side, respectively. There also exist pairs of numbers for the longitudinal and lateral cg locations which drive both the cyclic pitch components to zero at a given forward speed. Based on these results, a compromise optimal cg location is obtained such that the cyclic pitch is bounded within ±5° for a BO105 helicopter rotor. Originality/value – The reduction in the cyclic pitch due to helicopter cg location is found to significantly reduce the maximum magnitudes of the control angles in flight, facilitating the swashplateless rotor concept. In addition, the existence of cg locations which drive the cyclic pitches to zero allows for the use of active cg movement as a way to replace the cyclic pitch control for helicopter MAV's.
Resumo:
he induced current and voltage on the skin of an airborne vehicle due to the coupling of external electromagnetic field could be altered in the presence of ionized exhaust plume. So in the present work, a theoretical analysis is done to estimate the electrical parameters such as electrical conductivity and permittivity and their distribution in the axial and radial directions of the exhaust plume of an airborne vehicle. The electrical conductivity depends on the distribution of the major ionic species produced from the propellant combustion. In addition it also depends on temperature and pressure distribution of the exhaust plume as well as the generated shock wave. The chemically reactive rocket exhaust flow is modeled in two stages. The first part is simulated from the combustion chamber to the throat of the supersonic nozzle by using NASA Chemical Equilibrium with Application (CEA) package and the second part is simulated from the nozzle throat to the downstream of the plume by using a commercial Computational Fluid Dynamics (CFD) solver. The contour plots of the exhaust parameters are presented. Eight barrel shocks which influence the distribution of the vehicle exhaust parameters are obtained in this simulation. The computed peak value of the electrical conductivity of the plume is 0.123 S/m and the relative permittivity varies from 0.89 to 0.99. The attenuation of the microwave when it is passing through the conducting exhaust plume has also been presented.
Resumo:
This paper presents a Dubins model based strategy to determine the optimal path of a Miniature Air Vehicle (MAV), constrained by a bounded turning rate, that would enable it to fly along a given straight line, starting from an arbitrary initial position and orientation. The method is then extended to meet the same objective in the presence of wind which has a magnitude comparable to the speed of the MAV. We use a modification of the Dubins' path method to obtain the complete optimal solution to this problem in all its generality.
Resumo:
This paper extends the iterative linear matrix inequality algorithm (ILMI) for systems having non-ideal PI, PD and PID implementations. The new algorithm uses the practical implementation of the feedback blocksto form the equivalent static output feedback plant. The LMI based synthesis techniques are used in the algorithm to design a multi-loop, multi-objective fixed structure control. The benefits of such a control design technique are brought out by applying it to the lateral stabilizing and tracking feedback control problem of a 30cm wingspan micro air vehicle.
Resumo:
An optimal pitch steering programme of a solid-fuel satellite launch vehicle to maximize either (1) the injection velocity at a given altitude, or (2) the size of circular orbit, for a given payload is presented. The two-dimensional model includes the rotation of atmosphere with the Earth, the vehicle's lift and drag, variation of thrust with time and altitude, inverse-square gravitational field, and the specified initial vertical take-off. The inequality constraints on the aerodynamic load, control force, and turning rates are also imposed. Using the properties of the central force motion the terminal constraint conditions at coast apogee are transferred to the penultimate stage burnout. Such a transformation converts a time-free problem into a time-fixed one, reduces the number of terminal constraints, improves accuracy, besides demanding less computer memory and time. The adjoint equations are developed in a compact matrix form. The problem is solved on an IBM 360/44 computer using a steepest ascent algorithm. An illustrative analysis of a typical launch vehicle establishes the speed of convergence, and accuracy and applicability of the algorithm.
Resumo:
In this paper a nonlinear optimal controller has been designed for aerodynamic control during the reentry phase of the Reusable Launch Vehicle (RLV). The controller has been designed based on a recently developed technique Optimal Dynamic Inversion (ODI). For full state feedback the controller has required full information about the system states. In this work an Extended Kalman filter (EKF) is developed to estimate the states. The vehicle (RLV) has been has been consider as a nonlinear Six-Degree-Of-Freedom (6-DOF) model. The simulation results shows that EKF gives a very good estimation of the states and it is working well with ODI. The resultant trajectories are very similar to those obtained by perfect state feedback using ODI only.
Resumo:
With the objective of better understanding the significance of New Car Assessment Program (NCAP) tests conducted by the National Highway Traffic Safety Administration (NHTSA), head-on collisions between two identical cars of different sizes and between cars and a pickup truck are studied in the present paper using LS-DYNA models. Available finite element models of a compact car (Dodge Neon), midsize car (Dodge Intrepid), and pickup truck (Chevrolet C1500) are first improved and validated by comparing theanalysis-based vehicle deceleration pulses against corresponding NCAP crash test histories reported by NHTSA. In confirmation of prevalent perception, simulation-bascd results indicate that an NCAP test against a rigid barrier is a good representation of a collision between two similar cars approaching each other at a speed of 56.3 kmph (35 mph) both in terms of peak deceleration and intrusions. However, analyses carried out for collisions between two incompatible vehicles, such as an Intrepid or Neon against a C1500, point to the inability of the NCAP tests in representing the substantially higher intrusions in the front upper regions experienced by the cars, although peak decelerations in cars arc comparable to those observed in NCAP tests. In an attempt to improve the capability of a front NCAP test to better represent real-world crashes between incompatible vehicles, i.e., ones with contrasting ride height and lower body stiffness, two modified rigid barriers are studied. One of these barriers, which is of stepped geometry with a curved front face, leads to significantly improved correlation of intrusions in the upper regions of cars with respect to those yielded in the simulation of collisions between incompatible vehicles, together with the yielding of similar vehicle peak decelerations obtained in NCAP tests.