83 resultados para Transient
Resumo:
An efficient measurement technique for studying the effect of transient electromagnetic fields under controlled conditions has been described. Broad-band TEM fields with a rise-time of a few nanoseconds were generated using a stripline method. Theoretical results are obtained and experimental measurements which confirm these results are described. The work will form the basis for a study of the susceptibility of digital integrated circuits and their interconnections to transient electromagnetic fields.
Resumo:
The interaction of transient electromagnetic field due to an NEMP with buried cables has been studied in this paper. The cables studied were of two types: shielded as well as unshielded cables. Using transmission line analysis, the induced voltage and current are computed at the load end of the cable for different soil conductivities, different depths of burial of cable and for different lengths of the cable. Effect of shielding on the induced voltage on the cable inner conductor as well as the dependence of the induced voltage on the shield thickness are also studied.
Resumo:
Past studies that have compared LBB stable discontinuous- and continuous-pressure finite element formulations on a variety of problems have concluded that both methods yield Solutions of comparable accuracy, and that the choice of interpolation is dictated by which of the two is more efficient. In this work, we show that using discontinuous-pressure interpolations can yield inaccurate solutions at large times on a class of transient problems, while the continuous-pressure formulation yields solutions that are in good agreement with the analytical Solution.
Resumo:
We study resonant nonlinear magneto-optic rotation (NMOR) in a paraffin-coated Rb vapor cell as the magnetic field is swept. At low sweep rates, the nonlinear rotation appears as a narrow resonance signal with a linewidth of about ``300 mu G''(2 pi x 420 Hz). At high sweep rates, the signal shows transient response with an oscillatory decay. The decay time constant is of order 100 ms. The behavior is different for transitions starting from the lower or the upper hyperfine level of the ground state because of optical pumping effects.
Resumo:
At the time of restoration transmission line switching is one of the major causes, which creates transient overvoltages. Though detailed Electro Magnetic Transient studies are carried out extensively for the planning and design of transmission systems, such studies are not common in a day-today operation of power systems. However it is important for the operator to ensure during restoration of supply that peak overvoltages resulting from the switching operations are well within safe limits. This paper presents a support vector machine approach to classify the various cases of line energization in the category of safe or unsafe based upon the peak value of overvoltage at the receiving end of line. Operator can define the threshold value of voltage to assign the data pattern in either of the class. For illustration of proposed approach the power system used for switching transient peak overvoltages tests is a 400 kV equivalent system of an Indian southern gri
Resumo:
The conducted as well as the induced voltages on control cables and control circuits due to transient electromagnetic (EM) fields generated during switching operations in a gas-insulated substation (GIS) depend on the waveshape of the very fast transient overvoltages and the associated very-fast transient currents (VFTCs). The aim of this paper is to build a basis for characterizing the VFTC generated in gas-insulated switchgear and the,associated equipment during switching operations for the study of transient coupling phenomena. The peak magnitudes of VFTC and their dominant frequency content at various locations have been computed in a 245-kV GIS for different switching operations as well as substation configurations. Finally, the influence of the substation layout on the frequency spectrum, dominant frequencies, and the highest possible frequency component of the VFTC at various distances from the switch have been reported.
Resumo:
The transient response spectrum of a cubic spring mass system subjected to a step function input is obtained. An approximate method is adopted where non-linear restoring force characteristic is replaced by two linear segments, so that the mean square error between them is a minimum. The effect of viscous damping on the peak response is also discussed for various values of the damping constant and the non-linearity restoring force parameter.
Resumo:
Temperature-time characteristics of tungsten filaments heated electrically under constant voltage in vacuum have been analysed. The analysis is carried out over the temperature range 300-2500°K, taking into account the actual variations with temperature of the various parameters involved, as reported by Jones and Langmuir (1927). The analysis leads to the conclusion that the temperature-time relationship is exponential throughout the range. The time constant is shown to be proportional to the diameter of the filament and T f-4.2 where Tf is the final temperature of the filament. The results of the analysis are applied to derive the voltage variations (continuous and discrete types) required to keep the transient current within specified limits during the rapid switching on of filaments as met with in high power thermionic valves.
Resumo:
A laboratory model of a thermally driven adsorption refrigeration system with activated carbon as the adsorbent and 1,1,1,2-tetrafluoroethane (HFC 134a) as the refrigerant was developed. The single stage compression system has an ensemble of four adsorbers packed with Maxsorb II specimen of activated carbon that provide a near continuous flow which caters to a cooling load of up to 5W in the 5-18 degrees C region. The objective was to utilise the low grade thermal energy to drive a refrigeration system that can be used to cool some critical electronic components. The laboratory model was tested for it performance at various cooling loads with the heat source temperature from 73 to 93 degrees C. The pressure transients during heating and cooling phases were traced. The cyclic steady state and transient performance data are presented. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The transient boundary layer flow and heat transfer of a viscous incompressible electrically conducting non-Newtonian power-law fluid in a stagnation region of a two-dimensional body in the presence of an applied magnetic field have been studied when the motion is induced impulsively from rest. The nonlinear partial differential equations governing the flow and heat transfer have been solved by the homotopy analysis method and by an implicit finite-difference scheme. For some cases, analytical or approximate solutions have also been obtained. The special interest are the effects of the power-law index, magnetic parameter and the generalized Prandtl number on the surface shear stress and heat transfer rate. In all cases, there is a smooth transition from the transient state to steady state. The shear stress and heat transfer rate at the surface are found to be significantly influenced by the power-law index N except for large time and they show opposite behaviour for steady and unsteady flows. The magnetic field strongly affects the surface shear stress, but its effect on the surface heat transfer rate is comparatively weak except for large time. On the other hand, the generalized Prandtl number exerts strong influence on the surface heat transfer. The skin friction coefficient and the Nusselt number decrease rapidly in a small interval 0 < t* < 1 and reach the steady-state values for t* >= 4. (C) 2010 Published by Elsevier Ltd.
Resumo:
The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.
Resumo:
The transition time associated with the time-variation of the voltage across a two-terminal diaphragm-less solion in response to a step-current stimulus has been studied experimentally. A theoretical analysis has also been made by solving the diffusion problem under the appropriate initial and boundary conditions. The behaviour of the theoretically predicted transition times is in agreement with the observed behaviour. The systems under study have been shown to be different from those used hitherto in thin-layer chronopotentiometry.
Resumo:
This paper describes an approach for the analysis and design of 765kV/400kV EHV transmission system which is a typical expansion in Indian power grid system, based on the analysis of steady state and transient over voltages. The approach for transmission system design is iterative in nature. The first step involves exhaustive power flow analysis, based on constraints such as right of way, power to be transmitted, power transfer capabilities of lines, existing interconnecting transformer capabilities etc. Acceptable bus voltage profiles and satisfactory equipment loadings during all foreseeable operating conditions for normal and contingency operation are the guiding criteria. Critical operating strategies are also evolved in this initial design phase. With the steady state over voltages obtained, comprehensive dynamic and transient studies are to be carried out including switching over voltages studies. This paper presents steady state and switching transient studies for alternative two typical configurations of 765kV/400 kV systems and the results are compared. Transient studies are carried out to obtain the peak values of 765 kV transmission systems and are compared with the alternative configurations of existing 400 kV systems.
Resumo:
The problem of detecting an unknown transient signal in noise is considered. The SNR of the observed data is first enhanced using wavelet domain filter The output of the wavelet domain filter is then transformed using a Wigner-Ville transform,which separates the spectrum of the observed signal into narrow frequency bands. Each subband signal at the output of the Wigner-ville block is subjected kto wavelet based level dependent denoising (WBLDD)to supress colored noise A weighted sum of the absolute value of outputs of WBLDD is passed through an energy detector, whose output is used as test statistic to take the final decision. By assigning weights proportional to the energy of the corresponding subband signals, the proposed detector approximates a frequency domain matched filter Simulation results are presented to show that the performance of the proposed detector is better than that of the wavelet packet transform based detector.
Resumo:
An experimental study for transient temperature response and pressure drop in a randomly packed bed at high Reynolds numbers is presented.The packed bed is used as a compact heat exchanger along with a solid-propellant gas generator, to generate room-temperature gases for use in control actuation, air bottle pressurization, etc. Packed beds of lengths 200 and 300 mm were characterized for packing-sphere-based Reynolds numbers ranging from 0.8 x 10(4) to 8.5 x 10(4).The solid packing used in the bed consisted of phi 9.5 mm steel spheres. The bed-to-particle diameter ratio was with the average packed-bed porosity around 0.43. The inlet flow temperature was unsteady and a mesh of spheres was used at either end to eliminate flow entrance and exit effects. Gas temperature and pressure were measured at the entry, exit,and at three axial locations along centerline in the packed beds. The solid packing temperature was measured at three axial locations in the packed bed. A correlation based on the ratio of pressure drop and inlet-flow momentum (Euler number) exhibited an asymptotically decreasing trend with increasing Reynolds number. Axial conduction across the packed bed was found to he negligible in the investigated Reynolds number range. The enthalpy absorption rate to solid packing from hot gases is plotted as a function of a nondimensional time constant for different Reynolds numbers. A longer packed bed had high enthalpy absorption rate at Reynolds number similar to 10(4), which decreased at Reynolds number similar to 10(5). The enthalpy absorption plots can be used for estimating enthalpy drop across packed bed with different material, but for a geometrically similar packing.