370 resultados para Thermoelectric power


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tetrahedrite compounds Cu12-xMnxSb4S13 (0 <= x <= 1.8) were prepared by solid state synthesis. A detailed crystal structure analysis of Cu10.6Mn1.4Sb4S13 was performed by single crystal X-ray diffraction (XRD) at 100, 200 and 300 K confirming the noncentrosymmetric structure (space group I (4) over bar 3m) of a tetrahedrite. The large atomic displacement parameter of the Cu2 atoms was described by splitting the 12e site into a partially and randomly occupied 24g site (Cu22) in addition to the regular 12e site (Cu21), suggesting a mix of dynamic and static off-plane Cu2 atom disorder. Rietveld powder XRD pattern and electron probe microanalysis revealed that all the Mn substituted samples showed a single tetrahedrite phase. The electrical resistivity increased with increasing Mn due to substitution of Mn2+ at the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. Even though the thermal conductivity decreased as a function of increasing Mn, the thermoelectric figure of merit ZT decreased, because the decrease of the power factor is stronger than the decrease of the thermal conductivity. The maximum ZT = 0.76 at 623 K is obtained for Cu12Sb4S13. The coefficient of thermal expansion 13.5 +/- 0.1 x 10(-6) K-1 is obtained in the temperature range from 460 K to 670 K for Cu10.2Mn1.8Sb4S13. The Debye temperature, Theta(D) = 244 K for Cu10.2Mn1.8Sb4S13, was estimated from an evaluation of the elastic properties. The effective paramagnetic moment 7.45 mu(B)/f.u. for Cu10.2Mn1.8Sb4S13 is fairly consistent with a high spin 3d(5) ground state of Mn.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lead tin telluride is one of the well-established thermoelectric materials in the temperature range 350-750 K. In the present study, Pb0.75-xMnxSn0.25Te1.00 alloys with variable manganese (Mn) content were prepared by solid state synthesis and the thermoelectric properties were studied. X-ray diffraction, (XRD) showed that the samples followed Vegard's law, indicating solid solution formation and substitution of Mn at the Pb site. Scanning Electron Microscopy (SEM) showed that the grain sizes varied from <1 mu m to more than 10 mu m and MnTe rich phase was present for higher Mn content. Seebeck coefficient, electrical resistivity and thermal conductivity were measured from room temperature to 720 K. At 300 K, large Seebeck values were obtained, possibly due to increased effective mass on Mn substitution and low carrier concentration of the samples. At higher temperatures, transition from n-type to p-type indicated the presence of thermally generated carriers. Temperature dependent electrical resistivity showed the transition from degenerate to non-degenerate behavior. For thermal conductivity, low values (similar to 1 W/m-K at 300 K) were obtained. At higher temperatures bipolar conduction was observed, in agreement with the Seebeck and resistivity data. Due to low power factor, the maximum thermoelectric figure of merit (zT) was limited to 0.23 at 329 K for the sample with lowest Mn content (x=0.03). (C) 2015 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metal atom (Co) substituted synthetic tetrahedrite compounds Cu12-xCoxSb4S13 (x = 0, 0.5, 1.0, 1.5, 2.0) were prepared by solid state synthesis. X-Ray Diffraction (XRD) patterns revealed tetrahedrite as the main phase, whereas for the compounds with x = 0, 0.5 a trace of impurity phase Cu3SbS4 was observed. The surface morphology showed a large grain size with low porosity, which indicated appropriate compaction for the hot pressed samples. The phase purity, as monitored by Electron Probe Micro Analysis (EPMA) is in good agreement with the XRD data. The elemental composition for all the compounds almost matched with the nominal composition. The X-ray Photoelectron Spectroscopy (XPS) data showed that Cu existed in both +1 and +2 states, while Sb exhibited +3 oxidation states. Elastic modulus and hardness showed a systematic variation with increasing Co content. The electrical resistivity and Seebeck coefficient increased with increase in the doping content due to the decrease in the number of carriers caused by the substitution of Co2+ on the Cu1+ site. The positive Seebeck coefficient for all samples indicates that the dominant carriers are holes. A combined effect of resistivity and Seebeck coefficient leads to the maximum power factor of 1.76 mW m(-1) K-2 at 673 K for Cu11.5Co0.5Sb4S13. This could be due to the optimization in the carrier concentration by the partial substitution of Co2+ on both the Cu1+ as well as Cu2+ site at the same doping levels, which is also supported by the XPS data. The total thermal conductivity systematically decreased with increase of doping content as it is mainly influenced by the decrease of carrier thermal conductivity. The maximum thermoelectric figure of merit zT = 0.98 was obtained at 673 K for Cu11.5Co0.5Sb4S13. (C) 2015 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the electronic and thermal transport properties of bulk MX2 compounds (M = Zr, Hf and X = S, Se) by first-principles calculations and semi-classical Boltzmann transport theory. The band structure shows the confinement of heavy and light bands along the out of plane and in-plane directions, respectively. This results in high electrical conductivity (sigma) and large thermopower leading to a high power factor (S-2 sigma) for moderate n-type doping. The phonon dispersion demonstrates low frequency flat acoustical modes, which results in low group velocities (v(g)). Consequently, lowering the lattice thermal conductivity (kappa(latt)) below 2 W/m K. Low kappa(latt) combined with high power factor results in ZT > 0.8 for all the bulk MX2 compounds at high temperature of 1200 K. In particular, the ZT(max) of HfSe2 exceeds 1 at 1400 K. Our results show that Hf/Zr based dichalcogenides are very promising for high temperature thermoelectric application. (C) 2015 AIP Publishing LLC.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Recently, much research has been focused on finding new thermoelectric materials. Cu-based quaternary chalcogenides that belong to A(2)BCD(4) (A = Cu; B = Zn, Cd; C = Sn, Ge; D = S, Se, Te) are wide band gap materials and one of the potential thermoelectric materials due to their complex crystal structures. In this study, In-doped quaternary compounds Cu2ZnGe1-xInxSe4 (x = 0, 0.025, 0.05, 0.075, 0.1) were prepared by a solid state synthesis method. Powder x-ray diffraction patterns of all the samples showed a tetragonal crystal structure (space group I-42m) of the main phase with a trace amount of impurity phases, which was further confirmed by Rietveld analysis. The elemental composition of all the samples showed a slight deviation from the nominal composition with the presence of secondary phases. All the transport properties were measured in the temperature range 373-673 K. The electrical resistivity of all the samples initially decreased up to similar to 470 K and then increased with increase in temperature upto 673 K, indicating the transition from semiconducting to metallic behavior. Positive Seebeck coefficients for all the samples revealed that holes are the majority carriers in the entire temperature range. The substitution of In3+ on Ge4+ introduces holes and results in the decrease of resistivity as well as the Seebeck coefficient, thereby leading to the optimization of the power factor. The lattice thermal conductivity of all the samples decreased with increasing temperature, indicating the presence of phonon-phonon scattering. As a result, the thermoelectric figure of merit (zT) of the doped sample showed an increase as compared to the undoped compound.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hexagonal Cu-2 Te has been synthesised by mechanical alloying from elemental powders. The milling time required for the synthesis is longer than that reported for other tellurides. The mechanical grinding of the bulk Cu2Te obtained by the melting route does not change the structure. Prolonged milling as well as grinding beyond 40 h lead to a decrease in grain size to nanometer level. The cold compaction of milled or ground powders exhibit much smaller Seebeck coefficient (thermopower). However, cold compaction of samples milled for longer time (>150 h) lead to the thermopower values close to that of the bulk indicating significant improvement of rheological properties at room temperature for powders milled for long times.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the education of physical sciences, the role of the laboratory cannot be overemphasised. It is the laboratory exercises which enable the student to assimilate the theoretical basis, verify the same through bench-top experiments, and internalize the subject discipline to acquire mastery of the same. However the resources essential to put together such an environment is substantial. As a result, the students go through a curriculum which is wanting in this respect. This paper presents a low cost alternative to impart such an experience to the student aimed at the subject of switched mode power conversion. The resources are based on an open source circuit simulator (Sequel) developed at IIT Mumbai, and inexpensive construction kits developed at IISc Bangalore. The Sequel programme developed by IIT Mumbai, is a circuit simulation program under linux operating system distributed free of charge. The construction kits developed at IISc Bangalore, is fully documented for anyone to assemble these circuit which minimal equipment such as soldering iron, multimeter, power supply etc. This paper puts together a simple forward dc to dc converter as a vehicle to introduce the programming under sequel to evaluate the transient performance and small signal dynamic model of the same. Bench tests on the assembled construction kit may be done by the student for study of operation, transient performance and closed loop stability margins etc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a power, latency and throughput trade-off study on NoCs by varying microarchitectural (e.g. pipelining) and circuit level (e.g. frequency and voltage) parameters. We change pipelining depth, operating frequency and supply voltage for 3 example NoCs - 16 node 2D Torus, Tree network and Reduced 2D Torus. We use an in-house NoC exploration framework capable of topology generation and comparison using parameterized models of Routers and links developed in SystemC. The framework utilizes interconnect power and delay models from a low-level modelling tool called Intacte[1]1. We find that increased pipelining can actually reduce latency. We also find that there exists an optimal degree of pipelining which is the most energy efficient in terms of minimizing energy-delay product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many wireless applications demand a fast mechanism to detect the packet from a node with the highest priority ("best node") only, while packets from nodes with lower priority are irrelevant. In this paper, we introduce an extremely fast contention-based multiple access algorithm that selects the best node and requires only local information of the priorities of the nodes. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities onto the receive power. It is based on a key result that shows that mapping onto a set of discrete receive power levels is optimal, when the power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture, idle channel, or collision. We also show how reliable information regarding the total received power at the receiver can be used to improve the algorithm by enhancing the feedback mechanism. The algorithm detects the packet from the best node in 1.5 to 2.1 slots, which is considerably lower than the 2.43 slot average achieved by the best algorithm known to date.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The power system network is assumed to be in steady-state even during low frequency transients. However, depending on generator dynamics, and toad and control characteristics, the system model and the nature of power flow equations can vary The nature of power flow equations describing the system during a contingency is investigated in detail. It is shown that under some mild assumptions on load-voltage characteristics, the power flow equations can be decoupled in an exact manner. When the generator dynamics are considered, the solutions for the load voltages are exact if load nodes are not directly connected to each other

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The application of multilevel control strategies for load-frequency control of interconnected power systems is assuming importance. A large multiarea power system may be viewed as an interconnection of several lower-order subsystems, with possible change of interconnection pattern during operation. The solution of the control problem involves the design of a set of local optimal controllers for the individual areas, in a completely decentralised environment, plus a global controller to provide the corrective signal to account for interconnection effects. A global controller, based on the least-square-error principle suggested by Siljak and Sundareshan, has been applied for the LFC problem. A more recent work utilises certain possible beneficial aspects of interconnection to permit more desirable system performances. The paper reports the application of the latter strategy to LFC of a two-area power system. The power-system model studied includes the effects of excitation system and governor controls. A comparison of the two strategies is also made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents three methodologies for determining optimum locations and magnitudes of reactive power compensation in power distribution systems. Method I and Method II are suitable for complex distribution systems with a combination of both radial and ring-main feeders and having different voltage levels. Method III is suitable for low-tension single voltage level radial feeders. Method I is based on an iterative scheme with successive powerflow analyses, with formulation and solution of the optimization problem using linear programming. Method II and Method III are essentially based on the steady state performance of distribution systems. These methods are simple to implement and yield satisfactory results comparable with the results of Method I. The proposed methods have been applied to a few distribution systems, and results obtained for two typical systems are presented for illustration purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of optimal scheduling of the generation of a hydro-thermal power system that is faced with a shortage of energy is studied. The deterministic version of the problem is first analyzed, and the results are then extended to cases where the loads and the hydro inflows are random variables.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes a method of adjusting the stator power factor angle for the control of an induction motor fed from a current source inverter (CSI) based on the concept of space vectors (or park vectors). It is shown that under steady state, if the torque angle is kept constant over the entire operating range, it has the advantage of keeping the slip frequency constant. This can be utilized to dispose of the speed feedback and simplify the control scheme for the drive, such that the stator voltage integral zero crossings alone can be used as a feedback for deciding the triggering instants of the CSI thyristors under stable operation of the system. A closed-loop control strategy is developed for the drive based on this principle, using a microprocessor-based control system and is implemented on a laboratory prototype CSI fed induction motor drive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The paper presents a new criterion for designing a power-system stabiliser, which is that it should cancel the negative damping torque inherent in a synchronous generator and automatic voltage regulator. The method arises from analysis based on the properties of tensor invariance, but it is easily implemented, and leads to the design of an adaptive controller. Extensive computations and simulation have been performed, and laboratory tests have been conducted on a computer-controlled micromachine system. Results are presented illustrating the effectiveness of the adaptive stabiliser.