255 resultados para Short fibre composite


Relevância:

30.00% 30.00%

Publicador:

Resumo:

E glass epoxy laminates of thicknesses in the range 2-5 mm were subjected to repeated impacts. For each thickness the number of hits to cause tup penetration was determined and the value of this number was higher the larger the thickness of the laminate tested. The C-scan, before and after impact, was done to obtain information regarding flaw distribution. Short beam shear test samples were made from locations at fixed distances from impact point and tested. The samples closer to the zone of impact showed lower strength values. Scanning fractography revealed shear deformation features for these samples and brittle fracture features for the region near the zone of impact.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Critical buckling loads of laminated fibre-reinforced plastic square panels have been obtained using the finite element method. Various boundary conditions, lay-up details, fibre orientations, cut-out sizes are considered. A 36 degrees of freedom triangular element, based on the classical lamination theory (CLT) has been used for the analysis. The performance of this element is validated by comparing results with some of those available in literature. New results have been given for several cases of boundary conditions for [0°/ ± 45°/90°]s laminates. The effect of fibre-orientation in the ply on the buckling loads has been investigated by considering [±?]6s laminates.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nonlinear finite element analysis is used for the estimation of damage due to low-velocity impact loading of laminated composite circular plates. The impact loading is treated as an equivalent static loading by assuming the impactor to be spherical and the contact to obey Hertzian law. The stresses in the laminate are calculated using a 48 d.o.f. laminated composite sector element. Subsequently, the Tsai-Wu criterion is used to detect the zones of failure and the maximum stress criterion is used to identify the mode of failure. Then the material properties of the laminate are degraded in the failed regions. The stress analysis is performed again using the degraded properties of the plies. The iterative process is repeated until no more failure is detected in the laminate. The problem of a typical T300/N5208 composite [45 degrees/0 degrees/-45 degrees/90 degrees](s) circular plate being impacted by a spherical impactor is solved and the results are compared with experimental and analytical results available in the literature. The method proposed and the computer code developed can handle symmetric, as well as unsymmetric, laminates. It can be easily extended to cover the impact of composite rectangular plates, shell panels and shells.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The phenomenon of superplasticity has been demonstrated in several zirconia-alumina composites. However, the rate controlling mechanism has not yet been unambiguously identified, due to the limited data available on these materials in comparison with 3 mol% yttria stabilized tetragonal zirconia (3YTZ). The limited data on a zirconia-20 wt% alumina (3Y20A) composite suggest that the mechanical characteristics are similar to those of 3YTZ. The present experimental study on 3Y20A reveals the occurrence of diffusion creep. The experimental results are examined critically in terms of dislocation activity and diffusion creep, and their relevance to superplastic deformation.

Relevância:

30.00% 30.00%

Publicador:

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, the mechanical behaviour of CSM (chopped strand mat)-based GFRC (glass fibre-reinforced composite) plates with single and multiple hemispheres under compressive loads has been investigated both experimentally and numerically. The basic stress-strain behaviours arc identified with quasi-static tests on two-ply coupon laminates and short cylinders, and these are followed up with compressive tests in a UTM (universal testing machine) on single- and multiple-hemisphere plates. The ability of an explicit LS-DYNA solver in predicting the complex material behaviour of composite hemispheres, including failure, is demonstrated. The relevance and scalability of the present class of structural components as `force-multipliers' and `energy-multipliers' have been justified by virtue of findings that as the number of hemispheres in a panel increased from one to four, peak load and average absorbed energy rose by factors of approximately four and six, respectively. The performance of a composite hemisphere has been compared to similar-sized steel and aluminium hemispheres, and the former is found to be of distinctly higher specific energy than the steel specimen. A simulation-based study has also been carried out on a composite 2 x 2-hemisphere panel under impact loads and its behaviour approaching that of an ideal energy absorber has been predicted. In summary, the present investigation has established the efficacy of composite plates with hemispherical force multipliers as potential energy-absorbing countermeasures and the suitability of CAE (computer-aided engineering) for their design.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dominant densification mechanisms for hot pressing of ZrB2-20 vol.% SiC composite at different hot-pressing temperatures and pressures was identified. The dominant densification mechanisms were found to change over a very short temperature range. For hot pressing at 1700 degrees C, the dominant densification mechanism was found to be mechanically driven particle fragmentation and rearrangement only, whereas at 1850 degrees C a plastic flow mechanism started to become dominant after initial particle fragmentation and rearrangement. At 2000 degrees C, the dominant mechanism changed from plastic flow to grain boundary diffusion. (c) 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Damage detection using guided Lamb waves is an important tool in Structural health Monitoring. In this paper, we outline a method of obtaining Lamb wave modes in composite structures using two dimensional Spectral Finite Elements. Using this approach, Lamb wave dispersion curves are obtained for laminated composite structures with different fibre orientation. These propagating Lamb wave modes are pictorially captured using tone burst signal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Cast Mg/SiCp and AZ91/SiCp composites were successfully hot extruded vis-a-vis cast and unreinforced Mg and AZ91 alloy up to low (R=15:1) and high (R=54:1) extrusion ratios at 350 degrees C. Significant matrix grain refinement was noticed after extrusion due to dynamic recrystallization; the degree of refinement being relatively higher for the two composites. The AZ91 based materials (AZ91 and AZ91/SiCp) exhibited comparatively finer grain size both in cast condition and after extrusion due to strong pinning effect from alloying elements as well as Mg17Al12 intermetallic phase. Compositional analyses eliminated the possibility of any interfacial reaction between matrix (Mg/AZ91) and second phase reinforcement (SiCp) in case of the composites. Texture evolution shows the formation of < 10 (1) over bar0 >parallel to ED texture fibre for all the materials after extrusion irrespective of SiCp addition or alloying which is primarily due to the deformation of the matrix phase. Micro-hardness did not significantly increased on extrusion in comparison to the respective cast materials for both composites and unreinforced alloys. Dynamic mechanical analysis, however, confirmed that the damping properties were affected by the extrusion ratio and to a lesser extent, due to the presence of second phase at room temperature as well as at higher temperature (300 degrees C). (C) 2014 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In high-speed aerospace vehicles, supersonic flutter is a well-known phenomenon of dynamic instability to which external skin panels are prone. In theory, the instability stage is expressed by the 'flutter critical parameter' Q(crit), which is a function of the stiffness-, and dynamic pressure parameters. For a composite skin panel, Q(crit) can be maximised by lay-up optimisation. Repeated-sublaminate lay-up schemes possess good potential for economical lay-up optimisation because the corresponding effort is limited to a family of sublaminates of few layers only. When Q(crit) is obtained for all sublaminates of a family, and the sublaminates ranked accordingly, the resulting ranking reveals not only the optimum lay-up, but also the near-optimum lay-ups, which are useful design alternatives, and the inferior lay-ups which should be avoided. In this paper, we examine sublaminate-ranking characteristics for a composite panel prone to supersonic flutter. In particular, we consider a simple supported midplane-symmetrical rectangular panel of typical aspect ratio alpha and flow angle psi, and for four-layered sublaminates, obtain the Q(crit)-based rankings for a wide range of the number of repeats, r. From the rankings, we find that an optimum lay-up can exist for which the outermost layer is oriented wide of, rather than along, the flow. Furthermore, for many lay-ups other than the optimum and the inferior, we see that as r increases, Q(crit) undergoes significant change in the course of converging. To reconcile these findings, eigenvalue-coalescence characteristics are discussed in detail for specific cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Composite materials exhibiting different moduli in tension and in compression, commonly called as bimodular composites are being used in many engineering fields. A finite element analysis is carried out for small deflection static behavior of laminated curved beams of bi modulus materials for both solid and hollow circular cross-sections using an iterative procedure. The finite element has 16 d.o.f. and uses the displacement field in terms of first order Hermite in terpolation polynomials. The neutral surface, i.e. the locus of points having zero axial strain is found to vary drastically depending on the loading, lay up schemes and radius of curvature. As il lustrations, plots of the cross-sections of the ruled neutral-surface are presented for some of the investigated cases. Using this element a few problems of curved laminated beams of bimodulus materials are solved for both solid and hollow circular cross-sections.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of tangential friction at pin—hole interfaces are appropriately modelled for the analysis of fasteners in large composite (orthotropic) plate loaded along its edges. The pin—hole contact could be of interference, clearance or neat fit. When the plate load is monotonically increased, interference fits give rise to receding contact, whereas clearance fits result in advancing contact. In either case, the changing contact situations lead to non-linear moving boundary value problems. The neat fit comes out as a special case in which the contact and separation regions are invariant with the applied load level and so the problem remains linear. The description of boundary conditions in the presence of tangential friction, will depend on whether the problem is one of advancing or receding contact, advancing contact presenting a special problem. A model is developed for the limiting case of a rigid pin and an ideally rough interface (infinitely large friction coefficient). The non-linearity resulting from the continuously varying proportions of contact and separation at the interface, is handled by an “Inverse Formulation” which was successfully applied earlier by the authors for smooth (zero friction) interfacial conditions. The additional difficulty introduced by advancing contact is handled by adopting a “Marching Solution”. The modelling and the procedure are illustrated in respect of symmetric plate load cases. Numerical results are presented bringing out the effects of interfacial friction and plate orthotropy on load-contact relations and plate stresses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The catalytic effects of Fe2O3, Ni2O3, MnO2, and Co2O3 transition metal oxides (TMO) on the combustion of polystyrene and carboxyl-terminated polybutadiene were investigated. The order of activity of TMO's was explained by the presence of Co and absence of Fe and Ni in their lattice systems along with a reduced electron-transfer process; in systems which induce the metal ions to enter the lattice, the electron transfer process is much greater. The thermal decomposition of ammonium perchlorate propellants was enhanced to a greater extent by Co2O3 and MnO2 than by Fe2O3 and Ni2O3.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Instability of thin-walled open-section laminated composite beams is studied using the finite element method. A two-noded, 8 df per node thin-walled open-section laminated composite beam finite element has been used. The displacements of the element reference axis are expressed in terms of one-dimensional first order Hermite interpolation polynomials, and line member assumptions are invoked in formulation of the elastic stiffness matrix and geometric stiffness matrix. The nonlinear expressions for the strains occurring in thin-walled open-section beams, when subjected to axial, flexural and torsional loads, are incorporated in a general instability analysis. Several problems for which continuum solutions (exact/approximate) are possible have been solved in order to evaluate the performance of finite element. Next its applicability is demonstrated by predicting the buckling loads for the following problems of laminated composites: (i) two layer (45°/−45°) composite Z section cantilever beam and (ii) three layer (0°/45°/0°) composite Z section cantilever beam.