210 resultados para Shear capacity
Resumo:
The paper presents a method for the evaluation of external stability of reinforced soil walls subjected to earthquakes in the framework of the pseudo-dynamic method. The seismic reliability of the wall is evaluated by considering the different possible failure modes such as sliding along the base, overturning about the toe point of the wall, bearing capacity and the eccentricity of the resultant force. The analysis is performed considering properties of the reinforced backfill, foundation soil below the base of the wall, length of the geosynthetic reinforcement and characteristics of earthquake ground motions such as shear wave and primary wave velocity as random variables. The optimum length of reinforcement needed to maintain stability against four modes of failure by targeting various component reliability indices is obtained. Differences between pseudo-static and pseudo-dynamic methods are clearly highlighted in the paper. A complete analysis of pseudo-static and pseudo-dynamic methodologies shows that the pseudodynamic method results in realistic design values for the length of geosynthetic reinforcement under earthquake conditions.
Resumo:
Abstract is not available.
Instabilities induced by variation of Brunt-Vaisala frequency in compressible stratified shear flows
Resumo:
The stability characteristics of a Helmholtz velocity profile in a stably stratified, compressible fluid in the presence of a lower rigid boundary are studied. A jump in the Brunt-Vaisala frequency at a level different from the shear zone is introduced and the variation of the Brunt-Vaisala frequency with respect to the vertical coordinate in the middle layer of the three-layered model is considered. An analytic solution in each of the layers is obtained, and the dispersion relation is solved numerically for parameters relevant to the model. The effect of shear in the lowermost layer of the three-layered model for a Boussinesq fluid is discussed. The results are compared with the earlier studies of Lindzen and Rosenthal, and Sachdev and Satya Narayanan. In the present model, new unstable modes with larger growth rates are obtained and the most unstable gravity wave modes are found to agree closely with the observed ones at various heights. Physics of Fluids is copyrighted by The American Institute of Physics.
Resumo:
A new binary law of velocity distribution has been developed to describe the velocity profile for the entire flow region. The law is a combination of logarithmic law, valid in the wall (inner) region, and parabolic law, valid in the core (outer) region of the flow. The validity of the law has been established based on earlier data on flat plates, rough and smooth pipes and experimental data obtained from rigid-walled open channels with plane sand beds. A procedure of estimating bed shear stress from the proposed law of velocity distribution using the measured velocity profile has been evolved. Bed shear estimates made according to this procedure are in agreement with the values obtained from uniform flow analysis in the case of open channel flow over a sediment bed. The proposed method of estimating the bed shear stress from the observed velocity profiles is found to be particularly useful in cases where it is difficult to determine precisely the true bed level, such as in the case of flow over sediment beds.
Resumo:
Bearing capacity factor N-c for axially loaded piles in clays whose cohesion increases linearly with depth has been estimated numerically under undrained (phi=0) condition. The Study follows the lower bound limit analysis in conjunction With finite elements and linear programming. A new formulation is proposed for solving an axisymmetric geotechnical stability problem. The variation of N-c with embedment ratio is obtained for several rates of the increase of soil cohesion with depth; a special case is also examined when the pile base was placed on the stiff clay stratum overlaid by a soft clay layer. It was noticed that the magnitude of N-c reaches almost a constant value for embedment ratio greater than unity. The roughness of the pile base and shaft affects marginally the magnitudes of N-c. The results obtained from the present study are found to compare quite well with the different numerical solutions reported in the literature.
Resumo:
The results from laboratory model tests and numerical simulations on square footings resting on sand are presented. Bearing capacity of footings on geosynthetic reinforced sand is evaluated and the effect of various reinforcement parameters like the type and tensile strength of geosynthetic material, amount of reinforcement, layout and configuration of geosynthetic layers below the footing on the bearing capacity improvement of the footings is studied through systemati model studies. A steel tank of size 900 x 900 x 600 mm is used for conducting model tests. Four types of grids, namely strong biaxial geogrid, weak biaxial geogrid, uniaxial geogrid and a geonet, each with different tensile strength, are used in the tests. Geosynthetic reinforcement is provided in the form of planar layers, varying the depth of reinforced zone below the footing, number of geosynthetic layers within the reinforced zone and the width of geosynthetic layers in different tests. Influence of all these parameters on the bearing capacity improvement of square footing and its settlement is studied by comparing with the test on unreinforced sand. Results show that the effective depth of reinforcement is twice the width of the footing and optimum spacing of geosynthetic layers is half the width of the footing. It is observed that the layout and configuration of reinforcement play a vital role in bearing capacity improvement rather than the tensile strength of the geosynthetic material. Experimental observations are supported by the findings from numerical analyses.
Resumo:
The vertical uplift resistance of two interfering rigid rough strip anchors embedded horizontally in sand at shallow depths has been examined. The analysis is performed by using an upper bound theorem o limit analysis in combination with finite elements and linear programming. It is specified that both the anchors are loaded to failure simultaneously at the same magnitude of the failure load. For different clear spacing (S) between the anchors, the magnitude of the efficiency factor (xi(gamma)) is determined. On account of interference, the magnitude of xi(gamma) is found to reduce continuously with a decrease in the spacing between the anchors. The results from the numerical analysis were found to compare reasonably well with the available theoretical data from the literature.
Resumo:
In the case of an ac cable, power transmission is limited by the length of the cable due to the capacitive reactive current component. It is well known that high-voltage direct current (HVDC) cables do not have such limitations. However, insulation-related thermal problems pose a limitation on the power capability of HVDC cables. The author presents a viable theoretical development, a logical extension to Whitehead's theory on thermal limitations of the insulation. The computation of the maximum power-carrying capability of HVDC cables subject to limits on the maximum operable temperature of the insulation is presented. The limitation on the power-carrying capability is closely associated with the electrothermal insulation failure. The effect of environmental interaction by way of external thermal resistance, an important aspect, is also considered in the formulations. The Lagrange multiplier method has been used to handle the ensuing optimization problem. The theory is based on an accepted theory of thermal breakdown in insulation and is an important and a coherent extension of great significance.
Resumo:
IN the last two decades, the instantaneous structure of a turbulent boundary layer has been examined by many in an effort to understand the dynamics of the flow. Distinct and well-defined flow patterns that seem to have great relevance to the turbulence production mechanism have been observed in the wall region.1'2 The flow near the wall is intermittent with periodic eruptions of the fluid, a phenomenon generally termed "bursting process." Earlier investigations in this field were limited to liquid flows at low speeds and the entire flowpattern was observed using flow visualization techniques.Study was later extended to boundary-layer flows in windtunnels at higher speeds and Reynolds numbers using hot-wiresignals for the analysis of the bursting phenomenon.
Resumo:
The behavior of pile foundations in non liquefiable soil under seismic loading is considerably influenced by the variability in the soil and seismic design parameters. Hence, probabilistic models for the assessment of seismic pile design are necessary. Deformation of pile foundation in non liquefiable soil is dominated by inertial force from superstructure. The present study considers a pseudo-static approach based on code specified design response spectra. The response of the pile is determined by equivalent cantilever approach. The soil medium is modeled as a one-dimensional random field along the depth. The variability associated with undrained shear strength, design response spectrum ordinate, and superstructure mass is taken into consideration. Monte Carlo simulation technique is adopted to determine the probability of failure and reliability indices based on pile failure modes, namely exceedance of lateral displacement limit and moment capacity. A reliability-based design approach for the free head pile under seismic force is suggested that enables a rational choice of pile design parameters.
Resumo:
The heat capacity of a substance is related to the structure and constitution of the material and its measurement is a standard technique of physical investigation. In this review, the classical methods are first analyzed briefly and their recent extensions are summarized. The merits and demerits of these methods are pointed out. The newer techniques such as the a.c. method, the relaxation method, the pulse methods, the laser flash calorimetry and other methods developed to extend the heat capacity measurements to newer classes of materials and to extreme conditions of sample geometry, pressure and temperature are comprehensively reviewed. Examples of recent work and details of the experimental systems are provided for each method. The introduction of automation in control systems for the monitoring of the experiments and for data processing is also discussed. Two hundred and eight references and 18 figures are used to illustrate the various techniques.
Resumo:
The near-tip deformation field in a high-constraint three-point bend specimen of pure aluminium single crystal is studied using in situ electron back-scattered diffraction and optical metallography. The orientation considered has the notch lying on the (0 1 0) plane and the notch front along direction. Results clearly show the occurrence of a kink shear sector boundary at 90° to the notch line on the specimen free surface as predicted by the analytical model of Rice [J.R. Rice, Mech. Mater. 6 (1987) 317].
Resumo:
The crush bands that form during plastic deformation of closed-cell metal foams are often inclined at 11-20 degrees to the loading axis, allowing for shear displacement of one part of the foam with respect to the other. Such displacement is prevented by the presence of a lateral constraint. This was analysed in this study, which shows that resistance against shear by the constraint leads to the strain-hardening effect in the foam that has been reported in a recent experimental study. (C) 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.