56 resultados para Sensor Data
Resumo:
A scheme for integration of stand-alone INS and GPS sensors is presented, with data interchange over an external bus. This ensures modularity and sensor interchangeability. Use of a medium-coupled scheme reduces data flow and computation, facilitating use in surface vehicles. Results show that the hybrid navigation system is capable of delivering high positioning accuracy.
Resumo:
We study sensor networks with energy harvesting nodes. The generated energy at a node can be stored in a buffer. A sensor node periodically senses a random field and generates a packet. These packets are stored in a queue and transmitted using the energy available at that time at the node. For such networks we develop efficient energy management policies. First, for a single node, we obtain policies that are throughput optimal, i.e., the data queue stays stable for the largest possible data rate. Next we obtain energy management policies which minimize the mean delay in the queue. We also compare performance of several easily implementable suboptimal policies. A greedy policy is identified which, in low SNR regime, is throughput optimal and also minimizes mean delay. Next using the results for a single node, we develop efficient MAC policies.
Resumo:
Various intrusion detection systems (IDSs) reported in the literature have shown distinct preferences for detecting a certain class of attack with improved accuracy, while performing moderately on the other classes. In view of the enormous computing power available in the present-day processors, deploying multiple IDSs in the same network to obtain best-of-breed solutions has been attempted earlier. The paper presented here addresses the problem of optimizing the performance of IDSs using sensor fusion with multiple sensors. The trade-off between the detection rate and false alarms with multiple sensors is highlighted. It is illustrated that the performance of the detector is better when the fusion threshold is determined according to the Chebyshev inequality. In the proposed data-dependent decision ( DD) fusion method, the performance optimization of ndividual IDSs is first addressed. A neural network supervised learner has been designed to determine the weights of individual IDSs depending on their reliability in detecting a certain attack. The final stage of this DD fusion architecture is a sensor fusion unit which does the weighted aggregation in order to make an appropriate decision. This paper theoretically models the fusion of IDSs for the purpose of demonstrating the improvement in performance, supplemented with the empirical evaluation.
Resumo:
We consider a single-hop data-gathering sensor network, consisting of a set of sensor nodes that transmit data periodically to a base-station. We are interested in maximizing the lifetime of this network. With our definition of network lifetime and the assumption that the radio transmission energy consumption forms the most significant portion of the total energy consumption at a sensor node, we attempt to enhance the network lifetime by reducing the transmission energy budget of sensor nodes by exploiting three system-level opportunities. We pose the problem of maximizing lifetime as a max-min optimization problem subject to the constraint of successful data collection and limited energy supply at each node. This turns out to be an extremely difficult optimization to solve. To reduce the complexity of this problem, we allow the sensor nodes and the base-station to interactively communicate with each other and employ instantaneous decoding at the base-station. The chief contribution of the paper is to show that the computational complexity of our problem is determined by the complex interplay of various system-level opportunities and challenges.
Resumo:
We are concerned with maximizing the lifetime of a data-gathering wireless sensor network consisting of set of nodes directly communicating with a base-station. We model this scenario as the m-message interactive communication between multiple correlated informants (sensor nodes) and a recipient (base-station). With this framework, we show that m-message interactive communication can indeed enhance network lifetime. Both worst-case and average-case performances are considered.
Resumo:
The motivation behind the fusion of Intrusion Detection Systems was the realization that with the increasing traffic and increasing complexity of attacks, none of the present day stand-alone Intrusion Detection Systems can meet the high demand for a very high detection rate and an extremely low false positive rate. Multi-sensor fusion can be used to meet these requirements by a refinement of the combined response of different Intrusion Detection Systems. In this paper, we show the design technique of sensor fusion to best utilize the useful response from multiple sensors by an appropriate adjustment of the fusion threshold. The threshold is generally chosen according to the past experiences or by an expert system. In this paper, we show that the choice of the threshold bounds according to the Chebyshev inequality principle performs better. This approach also helps to solve the problem of scalability and has the advantage of failsafe capability. This paper theoretically models the fusion of Intrusion Detection Systems for the purpose of proving the improvement in performance, supplemented with the empirical evaluation. The combination of complementary sensors is shown to detect more attacks than the individual components. Since the individual sensors chosen detect sufficiently different attacks, their result can be merged for improved performance. The combination is done in different ways like (i) taking all the alarms from each system and avoiding duplications, (ii) taking alarms from each system by fixing threshold bounds, and (iii) rule-based fusion with a priori knowledge of the individual sensor performance. A number of evaluation metrics are used, and the results indicate that there is an overall enhancement in the performance of the combined detector using sensor fusion incorporating the threshold bounds and significantly better performance using simple rule-based fusion.
Resumo:
We discuss the key issues in the deployment of sparse sensor networks. The network monitors several environment parameters and is deployed in a semi-arid region for the benefit of small and marginal farmers. We begin by discussing the problems of an existing unreliable 1 sq km sparse network deployed in a village. The proposed solutions are implemented in a new cluster. The new cluster is a reliable 5 sq km network. Our contributions are two fold. Firstly, we describe a. novel methodology to deploy a sparse reliable data gathering sensor network and evaluate the ``safe distance'' or ``reliable'' distance between nodes using propagation models. Secondly, we address the problem of transporting data from rural aggregation servers to urban data centres. This paper tracks our steps in deploying a sensor network in a village,in India, trying to provide better diagnosis for better crop management. Keywords - Rural, Agriculture, CTRS, Sparse.
Resumo:
The Mycobacterium tuberculosis transcriptional regulator Rv1364c regulates the activity of the stress response sigma factor sigma(F). This multi-domain protein has several components: a signaling PAS domain and an effector segment comprising of a phosphatase, a kinase and an anti-anti-sigma factor domain. Based on Small Angle X-ray Scattering (SAXS) data, Rv1364c was recently shown to be a homo-dimer and adopt an elongated conformation in solution. The PAS domain could not be modeled into the structural envelope due to poor sequence similarity with known PAS proteins. The crystal structure of the PAS domain described here provides a structural basis for the dimerization of Rv1364c. It thus appears likely that the PAS domain regulates the anti-sigma activity of Rv1364c by oligomerization. A structural comparison with other characterized PAS domains reveal several sequence and conformational features that could facilitate ligand binding - a feature which suggests that the function of Rv1364c could potentially be governed by specific cellular signals or metabolic cues. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
We study a sensor node with an energy harvesting source. In any slot,the sensor node is in one of two modes: Wake or Sleep. The generated energy is stored in a buffer. The sensor node senses a random field and generates a packet when it is awake. These packets are stored in a queue and transmitted in the wake mode using the energy available in the energy buffer. We obtain energy management policies which minimize a linear combination of the mean queue length and the mean data loss rate. Then, we obtain two easily implementable suboptimal policies and compare their performance to that of the optimal policy. Next, we extend the Throughput Optimal policy developed in our previous work to sensors with two modes. Via this policy, we can increase the through put substantially and stabilize the data queue by allowing the node to sleep in some slots and to drop some generated packets. This policy requires minimal statistical knowledge of the system. We also modify this policy to decrease the switching costs.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
Increasing network lifetime is important in wireless sensor/ad-hoc networks. In this paper, we are concerned with algorithms to increase network lifetime and amount of data delivered during the lifetime by deploying multiple mobile base stations in the sensor network field. Specifically, we allow multiple mobile base stations to be deployed along the periphery of the sensor network field and develop algorithms to dynamically choose the locations of these base stations so as to improve network lifetime. We propose energy efficient low-complexity algorithms to determine the locations of the base stations; they include i) Top-K-max algorithm, ii) maximizing the minimum residual energy (Max-Min-RE) algorithm, and iii) minimizing the residual energy difference (MinDiff-RE) algorithm. We show that the proposed base stations placement algorithms provide increased network lifetimes and amount of data delivered during the network lifetime compared to single base station scenario as well as multiple static base stations scenario, and close to those obtained by solving an integer linear program (ILP) to determine the locations of the mobile base stations. We also investigate the lifetime gain when an energy aware routing protocol is employed along with multiple base stations.
Resumo:
In the direction of arrival (DOA) estimation problem, we encounter both finite data and insufficient knowledge of array characterization. It is therefore important to study how subspace-based methods perform in such conditions. We analyze the finite data performance of the multiple signal classification (MUSIC) and minimum norm (min. norm) methods in the presence of sensor gain and phase errors, and derive expressions for the mean square error (MSE) in the DOA estimates. These expressions are first derived assuming an arbitrary array and then simplified for the special case of an uniform linear array with isotropic sensors. When they are further simplified for the case of finite data only and sensor errors only, they reduce to the recent results given in [9-12]. Computer simulations are used to verify the closeness between the predicted and simulated values of the MSE.
Resumo:
In this work we explore the application of wireless sensor technologies for the benefit of small and marginal farmers in semi-arid regions. The focus in this paper is to discuss the merits and demerits of data gathering & relay paradigms that collect localized data over a wide area. The data gathered includes soil moisture, temperature, pressure, rain data and humidity. The challenge to technology intervention comes mainly due to two reasons: (a) Farmers in general are interested in crop yield specific to their piece of land. This is because soil texture can vary rapidly over small regions. (b) Due to a high run-off, the soil moisture retention can vary from region to region depending on the topology of the farm. Both these reasons alter the needs drastically. Additionally, small and marginal farms can be sandwiched between rich farm lands. The village has very little access to grid power. Power cuts can extend up to 12 hours in a day and upto 3 or 4 days during some months in the year. In this paper, we discuss 3 technology paradigms for data relaying. These include Wi-Fi (Wireless Fidelity), GPRS (General Packet Radio Service) and DTN (Delay and Disruption Tolerant Network) technologies. We detail the merits and demerits of each of these solutions and provide our final recommendations. The project site is a village called Chennakesavapura in the state of Karnataka, India.
Resumo:
In this paper, we study the problem of wireless sensor network design by deploying a minimum number of additional relay nodes (to minimize network design cost) at a subset of given potential relay locationsin order to convey the data from already existing sensor nodes (hereafter called source nodes) to a Base Station within a certain specified mean delay bound. We formulate this problem in two different ways, and show that the problem is NP-Hard. For a problem in which the number of existing sensor nodes and potential relay locations is n, we propose an O(n) approximation algorithm of polynomial time complexity. Results show that the algorithm performs efficiently (in over 90% of the tested scenarios, it gave solutions that were either optimal or exceeding optimal just by one relay) in various randomly generated network scenarios.
Resumo:
Over the last few decades, there has been a significant land cover (LC) change across the globe due to the increasing demand of the burgeoning population and urban sprawl. In order to take account of the change, there is a need for accurate and up- to-date LC maps. Mapping and monitoring of LC in India is being carried out at national level using multi-temporal IRS AWiFS data. Multispectral data such as IKONOS, Landsat- TM/ETM+, IRS-1C/D LISS-III/IV, AWiFS and SPOT-5, etc. have adequate spatial resolution (~ 1m to 56m) for LC mapping to generate 1:50,000 maps. However, for developing countries and those with large geographical extent, seasonal LC mapping is prohibitive with data from commercial sensors of limited spatial coverage. Superspectral data from the MODIS sensor are freely available, have better temporal (8 day composites) and spectral information. MODIS pixels typically contain a mixture of various LC types (due to coarse spatial resolution of 250, 500 and 1000 m), especially in more fragmented landscapes. In this context, linear spectral unmixing would be useful for mapping patchy land covers, such as those that characterise much of the Indian subcontinent. This work evaluates the existing unmixing technique for LC mapping using MODIS data, using end- members that are extracted through Pixel Purity Index (PPI), Scatter plot and N-dimensional visualisation. The abundance maps were generated for agriculture, built up, forest, plantations, waste land/others and water bodies. The assessment of the results using ground truth and a LISS-III classified map shows 86% overall accuracy, suggesting the potential for broad-scale applicability of the technique with superspectral data for natural resource planning and inventory applications.