321 resultados para Semi-infinite domain
Resumo:
The so-called “Scheme of Squares”, displaying an interconnectivity of heterogeneous electron transfer and homogeneous (e.g., proton transfer) reactions, is analysed. Explicit expressions for the various partial currents under potentiostatic conditions are given. The formalism is applicable to several electrode geometries and models (e.g., semi-infinite linear diffusion, rotating disk electrodes, spherical or cylindrical systems) and the analysis is exact. The steady-state (t→∞) expressions for the current are directly given in terms of constant matrices whereas the transients are obtained as Laplace transforms that need to be inverted by approximation of numerical methods. The methodology employs a systems approach which replaces a system of partial differential equations (governing the concentrations of the several electroactive species) by an equivalent set of difference equations obeyed by the various partial currents.
Resumo:
The properties of Alfven surface waves along a cylindrical plasma column surrounded by vacuum or by another plasma medium are discussed. Both symmetric (m=0) and asymmetric (m=+or-1) modes are found to be dispersive in nature. The interfacial symmetric modes propagate in a certain frequency window ( omega A1, omega As), where omega As is the Alfven surface wave frequency along the interface of two semi-infinite media; when nu A1> nu A2 these modes propagate as backward waves and when nu A1< nu A2 as forward waves. The asymmetric modes change from backward to forward waves at a critical wave number kTr approximately=1.59/a when nu A1< nu A2 or vice versa when nu A1> nu A2.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
The system equations of a collisionless, unmagnetized plasma, contained in a box where a high frequency (h.f.1 electric field is incident, are solved in the electrostatic approximation. The surface modes of the plasma in the semi-infinite and box geometry are investigated. In the high frequency limit, the mode frequencies are not significantly changed by the h.f. field but their group velocities can be quite different. Two long wavelength low frequency modes, which are not excited in the absence of h.f. field, are found. These modes are true surface modes (decaying on one wavelength from the surface) unlike the only low frequency ion acoustic mode in the zero field case. In the short wavelength limit the low frequency mode occurs at &/2, oi being the ion plasma frequency, a result similar to the case of no h.f. field.
Resumo:
The nonlinear singular integral equation of transonic flow is examined, noting that standard numerical techniques are not applicable in solving it. The difficulties in approximating the integral term in this expression were solved by special methods mitigating the inaccuracies caused by standard approximations. It was shown how the infinite domain of integration can be reduced to a finite one; numerical results were plotted demonstrating that the methods proposed here improve accuracy and computational economy.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
The rail-sleeper system is idealized as an infinite, periodic beam-mass system. Use is made of the periodicity principle for the semi-infinite halves on either side of the forcing point for evaluation of the wave propagation constants and the corresponding modal vectors. It is shown that the spread of acceleration away from the forcing point depends primarily upon one of the wave propagation constants. However, all the four modal vectors (two for the left-hand side and two for the right-hand side) determine the driving point impedance of the rail-sleeper system, which in combination with the driving point impedance of the wheel (which is adopted from the preceding companion paper) determines the forces generated by combined surface roughness and the resultant accelerations. The compound one-third octave acceleration levels generated by typical roughness spectra are generally of the same order as the observed levels.
Resumo:
High frequency three-wave nonlinear 'explosive' interaction of the surface modes of a semi-infinite beam-plasma system under no external field is investigated. The conditions that favour nonlinear instability, keep the plasma linearly stable. The beam runs parallel to the surface. If at least one of the three wave vectors of the surface modes is parallel to the beam, explosive interaction at the surface takes place after it has happened in the plasma bulk, provided the bulk waves propagate almost perpendicular to the surface and are of short wavelength. On the other hand if the bulk modes have long wavelength and propagate almost parallel to the surface, the surface modes can 'explode' first.
Resumo:
Using inhomogeneous dynamical mean-field theory, we show that the normal-metal proximity effect could force any finite number of Mott-insulating "barrier" planes sandwiched between semi-infinite metallic leads to become "fragile" Fermi liquids. They are fully Fermi-liquid-like at T=0, leading to a restoration of lattice periodicity at zero frequency, with a well-defined Fermi surface, and perfect (ballistic) conductivity. However, the Fermi-liquid character can rapidly disappear at finite omega, V, T, disorder, or magnetism, all of which restore the expected quantum tunneling regime, leading to fascinating possibilities for nonlinear response in devices.
Resumo:
The nature of the neutral curves for the stability of a Helmholtz velocity profile in a stratified, Boussinesq fluid in the presence of a uniform magnetic field for the cases (1) an infinite fluid (2) a semi-infinite fluid with a rigid boundary is discussed.
Resumo:
The solution for a line source of oscillatory strength kept at the origin in a wall bounding a semi-infinite viscous imcompressible stratified fluid is presented in an integral form. The behaviour of the flow at far field and near field is studied by an asymptotic expansion procedure. The streamlines for different parameters are drawn and discussed. The real characteristic straight lines present in the inviscid problem are modified by the viscosity and the solutions obtained are valid even at the resonance frequency.
Resumo:
A theory for Fournier polarography and higher order harmonics is presented. This is valid for reversible systems under semi-infinite diffusion to stationary and expanding plane electrodes. The algorithm is simple, accurate and exploits the identities holding for the interfacial concentrations. The computations — minimal in nature — can be carried out easily and the results given here were evaluated taking into account the presence of harmonics to, at least, the twenty-fifth order.
Resumo:
Transient natural convection flow on a heated cylinder buried in a semi-infinite liquid-saturated porous medium has been studied. The unsteadiness in the problem arises due to the cylinder which is heated (cooled) suddenly and then maintained at that temperature. The coupled partial differential equations governing the flow and heat transfer are cast into stream function-temperature formulation, and the solutions are obtained from the initial time to the time when steady state is reached. The heat transfer is found to change significantly with increasing time in a small time interval immediately after the start of the impulsive change, and steady state is reached after some time. The average Nusselt number is found to increase with Rayleigh number When the surface of the cylinder is suddenly cooled, there is a change in the direction of the heat transfer in a small time interval immediately after the start of the impulsive change in the surface temperature;however when the surface temperature is suddenly increased, no such phenomenon is observed.
Resumo:
In this paper, we have first given a numerical procedure for the solution of second order non-linear ordinary differential equations of the type y″ = f (x;y, y′) with given initial conditions. The method is based on geometrical interpretation of the equation, which suggests a simple geometrical construction of the integral curve. We then translate this geometrical method to the numerical procedure adaptable to desk calculators and digital computers. We have studied the efficacy of this method with the help of an illustrative example with known exact solution. We have also compared it with Runge-Kutta method. We have then applied this method to a physical problem, namely, the study of the temperature distribution in a semi-infinite solid homogeneous medium for temperature-dependent conductivity coefficient.
Resumo:
This paper describes a predictive model for breakout noise from an elliptical duct or shell of finite length. The transmission mechanism is essentially that of ``mode coupling'', whereby higher structural modes in the duct walls get excited because of non-circularity of the wall. Effect of geometry has been taken care of by evaluating Fourier coefficients of the radius of curvature. The noise radiated from the duct walls is represented by that from a finite vibrating length of a semi infinite cylinder in a free field. Emphasis is on understanding the physics of the problem as well as analytical modeling. The analytical model is validated with 3-D FEM. Effects of the ovality, curvature, and axial terminations of the duct have been demonstrated. (C) 2010 Institute of Noise Control Engineering.