242 resultados para Science fiction films
Resumo:
Surface activity of solution deposited (SD) amorphous films of As2S3 has been investigated. Silver and copper are readily deposited on such films from appropriate aqueous ionic solutions. The metals diffuse into the films upon irradiation with energetic photons. Structure and properties of SD films have been investigated using electron microscopy, optical spectroscopy and differential scanning calorimetry. The amorphous films tend to crystallize upon metal diffusion. The stability of amorphous films, the deposition of metals on their active surfaces and the photo-induced diffusion may all be attributed to the presence or production of charged defects in amorphous chalcogenide films.
Resumo:
The electrical activation energy and optical band-gap of GeSe and GeSbSe thin films prepared by flash evaporation on to glass substrates have been determined. The conductivities of the films were found to be given by Image , the activation energy Ea being 0.53 eV and 0.40 eV for GeSe and GeSbSe respectively. The optical absorption constant α near the absorption edge could be described by Image from which the optical band-gaps E0 were found to be 1.01 eV for GeSe and 0.67 eV for GeSbSe at 300°K. At 110°K the corresponding values of E0 were 1.07 eV and 0.735 eV respectively. The significance of these values is discussed in relation to those of other amorphous semiconductors.
Resumo:
The performance of optoelectronic devices critically depends on the quality of active layer. An effective way to obtain a high quality layers is by creating excess of metal atoms through various heat treatments. Recently, rapid thermal annealing (RTA) has proved a versatile technique for the post-treatment of semiconductor materials as compared to other techniques due to its precise control over the resources. Thus, we carried out a set of experiments on SnS films to explore the influence of RTA treatment on their properties. From these experiments we noticed that the films treated at 400 °C for 1 min in N2 atmosphere have a low electrical resistivity of ~5 Ωcm with relatively high Hall mobility and carrier density of 99 cm2/Vs and 1.3 × 1016 cm−3, respectively. The observed results, therefore, emphasise that it is possible to obtain good quality SnS films through RTA treatment without disturbing their crystal structure.
Resumo:
Molybdenum oxide films (MoO3) were deposited on glass and crystalline silicon substrates by sputtering of molybdenum target under various oxygen partial pressures in the range 8 × 10−5–8 × 10−4 mbar and at a fixed substrate temperature of 473 K employing dc magnetron sputtering technique. The influence of oxygen partial pressure on the composition stoichiometry, chemical binding configuration, crystallographic structure and electrical and optical properties was systematically studied. X-ray photoelectron spectra of the films formed at 8 × 10−5 mbar showed the presence of Mo6+ and Mo5+ oxidation states of MoO3 and MoO3−x. The films deposited at oxygen partial pressure of 2 × 10−4 mbar showed Mo6+ oxidation state indicating the films were nearly stoichiometric. It was also confirmed by the Fourier transform infrared spectroscopic studies. X-ray diffraction studies revealed that the films formed at oxygen partial pressure of 2 × 10−4 mbar showed the presence of (0 k 0) reflections indicated the layered structure of α-phase MoO3. The electrical conductivity of the films decreased from 3.6 × 10−5 to 1.6 × 10−6 Ω−1 cm−1, the optical band gap of the films increased from 2.93 to 3.26 eV and the refractive index increased from 2.02 to 2.13 with the increase of oxygen partial pressure from 8 × 10−5 to 8 × 10−4 mbar, respectively.
Resumo:
Nanocrystalline TiO2 films have been synthesized on glass and silicon substrates by sol-gel technique. The films have been characterized with optical reflectance/transmittance in the wavelength range 300-1000nm and the optical constants (n, k) were estimated by using envelope technique as well as spectroscopic ellipsometry. Morphological studies have been carried Out using atomic force microscope (AFM). Metal-Oxide-Silicon (MOS) capacitor was fabricated using conducting coating on TiO2 film deposited on silicon. The C-V measurements show that the film annealed at 300 degrees C has a dielectric constant of 19.80. The high percentage of transmittance, low surface roughness and high dielectric constant suggests that it can be used as an efficient anti-reflection coating on silicon and other optical coating applications and also as a MOS capacitor.
Resumo:
Tungsten oxide thin films are of great interest due to their promising applications in various optoelectronic thin film devices. We have investigated the microstructural evolution of tungsten oxide thin films grown by DC magnetron sputtering on silicon substrate. The structural characterization and surface morphology were carried out using X-ray diffraction and Scanning Electron Microscopy (SEM). The as deposited films were amorphous, where as, thin films annealed above 400 degrees C were crystalline. In order to explain the microstructural changes due to annealing, we have proposed a ``instability wheel'' model for the evolution of the microstructure. This model explains the transformation of mater into various geometries within them selves, followed by external perturbation.
Resumo:
We study the thermoelectric power under classically large magnetic field (TPM) in ultrathin films (UFs), quantum wires (QWs) of non-linear optical materials on the basis of a newly formulated electron dispersion law considering the anisotropies of the effective electron masses, the spin-orbit splitting constants and the presence of the crystal field splitting within the framework of k.p formalism. The results of quantum confined III-V compounds form the special cases of our generalized analysis. The TPM has also been studied for quantum confined II-VI, stressed materials, bismuth and carbon nanotubes (CNs) on the basis of respective dispersion relations. It is found taking quantum confined CdGeAs2, InAs, InSb, CdS, stressed n-InSb and Bi that the TPM increases with increasing film thickness and decreasing electron statistics exhibiting quantized nature for all types of quantum confinement. The TPM in CNs exhibits oscillatory dependence with increasing carrier concentration and the signature of the entirely different types of quantum systems are evident from the plots. Besides, under certain special conditions, all the results for all the materials gets simplified to the well-known expression of the TPM for non-degenerate materials having parabolic energy bands, leading to the compatibility test. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Sol-gel route was employed to grow polycrystalline thin films of Li-doped ZnO thin films (Zn1-xLixO, x=0.15). Polycrystalline films were obtained at a growth temperature of 400-500 degrees C. Ferroelectricity in Zn0.85Li0.15O was verified by examining the temperature variation of the real and imaginary parts of dielectric constant, and from the C-V measurements. The phase transition temperature was found to be 330 K. The room-temperature dielectric constant and dissipation factor were 15.5 and 0.09 respectively, at a frequency of 100 kHz. The films exhibited well-defined hysteresis loop, and the values of spontaneous polarization (P-s) and coercive field were 0.15 mu C/cm(2) and 20 kV/cm, respectively, confirming the presence of ferroelectricity.
Resumo:
The lead based ferroelectric PbZr0.53Ti0.47O3 (PZT), (Pb0.90La0.10)TiO3 (PLT10) and (Pb0.80La0.20)TiO3 (PLT20) thin films, prepared by pulsed laser ablation technique, were studied for their response to the 70 MeV oxygen ion irradiation. The dielectric analysis, capacitance-voltage (C- V) and DC leakage current measurements were performed before and after the irradiation to high-energy oxygen ions. The irradiation produced considerable changes in the dielectric, C-V, leakage characteristics and induced some amount of amorphization. The PZT films showed partial recrystallization after a thermal annealing at 400 degrees C for 10 min. The phase transition temperature [T-c] of PLT20 increased from 115 degrees C to 120 degrees C. The DC conductivity measurements showed a shift in the onset of non-linear conduction region. The current density decreased by two orders of magnitude after irradiation. After annealing the irradiated films at a temperature of 400 degrees C for 10 min, the films partially regained the dielectric and electrical properties. The results are discussed in terms of the irradiation-induced amorphization, the pinning of the ferroelectric domains by trapped charges and the thermal annealing of the defects generated during the irradiation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Magnetron sputtering is a promising technique for the growth of oxide materials including ZnO, which allows deposition of films at low temperatures with good electrical properties. The current-voltage (I-P) characteristics of An Schottky contacts on magnetron sputtered ZnO, films have been measured over a temperature range of 278-358K. Both effective barrier height (phi(B,eff)) and ideality factor (n) are found to be a function of temperature, and this behavior has been interpreted on the basis of a Gaussian distribution of barrier heights due to barrier height inhomogeneities that prevail at the interface. Density of states (DOS) near the Fermi level is determined using a model based on the space charge limited current (SCLC). The dispersion in both real and imaginary parts of the dielectric constant at low frequencies, with increase in temperature is attributed to the space charge effect. Complex impedance plots exhibited two semicircles, which corresponds to bulk grains and the grain boundaries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Thin films of ZrO2 were prepared by reactive magnetron sputtering. Annealing of the films exhibited a drastic change in the properties due to improved crystallinity and packing density. The root mean square roughness of the sample observed from atomic force microscope is about 5.75 nm which is comparable to the average grain size of the thin film which is about 6 nm obtained from X-ray diffraction. The film annealed at 873 K exhibits an optical band gap of around 4.83 eV and shows +4 oxidation state of zirconium indicating fully oxidized zirconium, whereas higher annealing temperatures lead to oxygen deficiency in the films and this is reflected in their properties. A discontinuity in the imaginary part of the AC conductivity was observed in the frequency range of tens of thousands of Hz, where as, the real part does not show such behavior.
Resumo:
Titanium dioxide thin films have been synthesized by sol-gel spin coating technique on glass and silicon substrates with and without surfactant polyethylene glycol (PEG). XRD and SEM results confirm the presence of nano-crystalline (anatase) phase at an annealing temperature of 300 degrees C. The influence of surfactant and annealing temperature on optical properties of TiO2 thin films has been studied. Optical constants and film thickness were estimated by Swanepoel's (envelope) method and by ellipsometric measurements in the visible spectral range. The optical transmittance and reflectance were found to decrease with an increase in PEG percentage. Refractive index of the films decreased and film thickness increased with the increase in percentage of surfactant. The refractive index of the un-doped TiO2 films was estimated at different annealing temperatures and it has increased with the increasing annealing temperature. The optical band gap of pure TiO2 films was estimated by Tauc's method at different annealing temperature. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
The compositional, structural, microstructural, dc electrical conductivity and optical properties of undoped zinc oxide films prepared by the sol-gel process using a spin-coating technique were investigated. The ZnO films were obtained by 5 cycle spin-coated and dried zinc oxide films followed by annealing in air at 600 A degrees C. The films deposited on the platinum coated silicon substrate were crystallized in a hexagonal wurtzite form. The energy-dispersive X-ray (EDX) spectrometry shows Zn and O elements in the products with an approximate molar ratio. TEM image of ZnO thin film shows that a grain of about 60-80 nm in size is really an aggregate of many small crystallites of around 10-20 nm. Electron diffraction pattern shows that the ZnO films exhibited hexagonal structure. The SEM micrograph showed that the films consist in nanocrystalline grains randomly distributed with voids in different regions. The dc conductivity found in the range of 10(-5)-10(-6) (Omega cm)(-1). The optical study showed that the spectra for all samples give the transparency in the visible range.
Resumo:
Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.
Resumo:
Nanocrystalline Zn1-xMnxS films (x=0.04, 0.08 and 0.12) were deposited on glass substrates at 400 K using a simple resistive thermal evaporation technique. All the deposited films were characterized by chemical, structural, morphological, optical and magnetic properties. Scanning electron microscopy and atomic force microscopy studies showed that all the films investigated were in nanocrystalline form with the grain size lying in the range 10–20 nm. All the films exhibited cubic structure and the lattice parameters increase linearly with composition. The absorption edge shifted from the higher-wavelength region to lower wavelengths with increase in Mn concentration. The magnetization increased sharply with increase of the Mn content up to x=0.08 and then decreased with further increase of the Mn content. Particularly, Zn0.92Mn0.08S concentration samples show a weak ferromagnetic nature, which might be the optimum concentration for optoelectronic and spintronic device applications.