88 resultados para SCHOTTKY-BARRIER
Resumo:
Schottky barrier devices of metal/semiconductor/metal structure were fabricated using organic semiconductor polyaniline (PANI) and aluminium thin film cathode. Aluminium contacts were made by thermal evaporation technique using two different forms of metals (bulk and nanopowder). The structure and surface morphology of these films were investigated by X-ray diffraction, scanning electron microscopy, and atomic force microscopy. Grain size of the as-deposited films obtained by Scherrer's method, modified Williamson-Hall method, and SEM were found to be different. Current-voltage (I-V) characteristic of Schottky barrier device structure indicates that the calculated current density (J) for device fabricated from aluminium nanopowder is more than that from aluminium in bulk form.
Resumo:
Nonpolar a-plane InN films were grown on r-plane sapphire substrate by plasma assisted molecular beam epitaxy with GaN underlayer. Effect of growth temperature on structural, morphological, and optical properties has been studied. The growth of nonpolar a-plane (1 1 -2 0) orientation was confirmed by high resolution X-ray diffraction study. The film grown at 500 degrees C shows better crystallinity with the rocking curve FWHM 0.67 degrees and 0.85 degrees along 0 0 0 1] and 1 - 1 0 0] directions, respectively. Scanning electron micrograph shows formation of Indium droplets at higher growth temperature. Room temperature absorption spectra show growth temperature dependent band gap variation from 0.74-0.81 eV, consistent with the expected Burstein-Moss effect. The rectifying behaviour of the I-V curve indicates the existence of Schottky barrier at the InN and GaN interface. (C) 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
InGaN epitaxial films were grown on GaN template by plasma-assisted molecular beam epitaxy. The composition of indium incorporation in single phase InGaN film was found to be 23%. The band gap energy of single phase InGaN was found to be similar to 2.48 eV: The current-voltage (I-V) characteristic of InGaN/GaN heterojunction was found to be rectifying behavior which shows the presence of Schottky barrier at the interface. Log-log plot of the I-V characteristics under forward bias indicates the current conduction mechanism is dominated by space charge limited current mechanism at higher applied voltage, which is usually caused due to the presence of trapping centers. The room temperature barrier height and the ideality factor of the Schottky junction were found to 0.76 eV and 4.9 respectively. The non-ideality of the Schottky junction may be due to the presence of high pit density and dislocation density in InGaN film. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The effect of doping trace amounts of noblemetals (Pt) on the gas sensing properties of chromium oxide thin films, is studied. The sensors are fabricated by depositing chromium oxide films on a glass substrate using a modified spray pyrolysis technique and characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy and X-ray photoelectron spectroscopy. The films are porous and nanocrystalline with an average crystallite size of similar to 30 nm. The typical p-type conductivity arises due to the presence of Cr vacancies, formed as a result of Cr non-stoichiometry, which is found to vary upon Pt doping. In order to analyze the effect of doping on the gas sensing properties, we have adopted a kinetic response analysis approach, which is based on Langmuir Adsorption isotherm (LA) theory. The sensor response is analyzed with equations obtained from LA theory and time constants as well as energies of adsorption-desorption are evaluated. It is seen that, Pt doping lowers the Schottky barrier height of the metal oxide semiconductor sensor from 222 meV to 172 meV. Subsequently the reduction in adsorption and desorption energies led to enhancement in sensor response and improvement in the kinetics of the sensor response i.e. the response time as well as recovery times of the sensor.
Resumo:
We report a first principles study of the electronic properties for a contact formed between Nb-doped monolayer MoS2 and gold for different doping concentrations. We first focus on the shift of energy levels in band structure and the density of states with respect to the Fermi level for a geometrically optimized 5 x 5 MoS2 supercell for both pristine and Nb-doped structures. The doping is achieved by substituting Mo atoms with Nb atoms at random positions. It is observed that for an experimentally reported sheet hole doping concentration of (rho(2D)) 1.8 x 10(14) cm(-2), the pristine MoS2 converts to degenerate p-type semiconductor. Next, we interface this supercell with six layers of < 111 > cleaved surface of gold to investigate the contact nature of MoS2-Au system. By careful examination of projected band structure, projected density of states, effective potential and charge density difference, we demonstrate that the Schottky barrier nature observed for pure MoS2-Au contact can be converted from n-type to p-type by efficient Nb doping.
Resumo:
In the last few years, there has been remarkable progress in the development of group III-nitride based materials because of their potential application in fabricating various optoelectronic devices such as light emitting diodes, laser diodes, tandem solar cells and field effect transistors. In order to realize these devices, growth of device quality heterostructures are required. One of the most interesting properties of a semiconductor heterostructure interface is its Schottky barrier height, which is a measure of the mismatch of the energy levels for the majority carriers across the heterojunction interface. Recently, the growth of non-polar III-nitrides has been an important subject due to its potential improvement on the efficiency of III-nitride-based opto-electronic devices. It is well known that the c-axis oriented optoelectronic devices are strongly affected by the intrinsic spontaneous and piezoelectric polarization fields, which results in the low electron-hole recombination efficiency. One of the useful approaches for eliminating the piezoelectric polarization effects is to fabricate nitride-based devices along non-polar and semi-polar directions. Heterostructures grown on these orientations are receiving a lot of focus due to enhanced behaviour. In the present review article discussion has been carried out on the growth of III-nitride binary alloys and properties of GaN/Si, InN/Si, polar InN/GaN, and nonpolar InN/GaN heterostructures followed by studies on band offsets of III-nitride semiconductor heterostructures using the x-ray photoelectron spectroscopy technique. Current transport mechanisms of these heterostructures are also discussed.
Resumo:
A new method for the separation of contact resistance (R-contact) into Schottky barrier resistance (R-SB) and interlayer resistance (R-IL) is proposed for multilayered MoS2 FETs. While R-SB varies exponentially with Schottky barrier height (Phi(bn)), R-IL essentially remains unchanged. An empirical model utilizing this dependence of R-contact versus Phi(bn) is proposed and fits to the experimental data. The results, on comparison with the existing reports of lowest R-contact, suggest that the extracted R-IL (1.53 k Omega.mu m) for an unaltered channel would determine the lower limit of intrinsic R-contact even for barrierless contacts for multilayered exfoliated MoS2 FETs.
Resumo:
Investigation of a transition metal dichalcogenide (TMD)-metal interface is essential for the effective functioning of monolayer TMD based field effect transistors. In this work, we employ the Density Functional Theory calculations to analyze the modulation of the electronic structure of monolayer WS2 with chlorine doping and the relative changes in the contact properties when interfaced with gold and palladium. We initially examine the atomic and electronic structures of pure and doped monolayer WS2 supercell and explore the formation of midgap states with band splitting near the conduction band edge. Further, we analyze the contact nature of the pure supercell with Au and Pd. We find that while Au is physiosorbed and forms n-type contact, Pd is chemisorped and forms p-type contact with a higher valence electron density. Next, we study the interface formed between the Cl-doped supercell and metals and observe a reduction in the Schottky barrier height (SBH) in comparison to the pure supercell. This reduction found is higher for Pd in comparison to Au, which is further validated by examining the charge transfer occurring at the interface. Our study confirms that Cl doping is an efficient mechanism to reduce the n-SBH for both Au and Pd, which form different types of contact with WS2. (C) 2016 AIP Publishing LLC.
Resumo:
MoTe2 with a narrow band-gap of similar to 1.1 eV is a promising candidate for optoelectronic applications, especially for the near-infrared photo detection. However, the photo responsivity of few layers MoTe2 is very small (<1mAW(-1)). In this work, we show that a few layer MoTe2-graphene vertical heterostructures have a much larger photo responsivity of similar to 20mAW(-1). The trans-conductance measurements with back gate voltage show on-off ratio of the vertical transistor to be similar to(0.5-1) x 10(5). The rectification nature of the source-drain current with the back gate voltage reveals the presence of a stronger Schottky barrier at the MoTe2-metal contact as compared to the MoTe2-graphene interface. In order to quantify the barrier height, it is essential to measure the work function of a few layers MoTe2, not known so far. We demonstrate a method to determine the work function by measuring the photo-response of the vertical transistor as a function of the Schottky barrier height at the MoTe2-graphene interface tuned by electrolytic top gating. (C) 2016 AIP Publishing LLC.
Resumo:
Magnetron sputtering is a promising technique for the growth of oxide materials including ZnO, which allows deposition of films at low temperatures with good electrical properties. The current-voltage (I-P) characteristics of An Schottky contacts on magnetron sputtered ZnO, films have been measured over a temperature range of 278-358K. Both effective barrier height (phi(B,eff)) and ideality factor (n) are found to be a function of temperature, and this behavior has been interpreted on the basis of a Gaussian distribution of barrier heights due to barrier height inhomogeneities that prevail at the interface. Density of states (DOS) near the Fermi level is determined using a model based on the space charge limited current (SCLC). The dispersion in both real and imaginary parts of the dielectric constant at low frequencies, with increase in temperature is attributed to the space charge effect. Complex impedance plots exhibited two semicircles, which corresponds to bulk grains and the grain boundaries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
We demonstrate the depinning of Fermi level on both p- and n-type germanium after sulfur passivation by aqueous (NH4)(2)S treatment. Schottky contacts realized using metals with a wide range of work functions produce nearly ideal behavior confirming that the Fermi level is depinned. Examination of the passivated surface using x-ray photoelectron spectroscopy reveals bonding between Ge and sulfur.It is shown that good Ohmic contacts to n-type Ge and a hole barrier height (phi(Bp)) of 0.6 eV to p-type Ge can be achieved after this passivation treatment, with Zr Schottky contacts. This is the highest phi(Bp) reported so far.
Resumo:
The current�voltage characteristics of Au/n-GaAs Schottky diodes grown by metal-organic vapor-phase epitaxy on Ge substrates were determined in the temperature range 80�300 K. The zero-bias barrier height for current transport decreases and the ideality factor increases at low temperatures. The ideality factor was found to show the T0 effect and a higher characteristic energy. The excellent matching between the homogeneous barrier height and the effective barrier height was observed and infer good quality of the GaAs film. No generation�recombination current due to deep levels arising during the GaAs/Ge heteroepitaxy was observed in this study. The value of the Richardson constant was found to be 7.04 A K?2 cm?2, which is close to the value used for the determination of the zero-bias barrier height.
Resumo:
The temperature dependent current transport properties of nonpolar a-plane (11 2 0) InN/GaN heterostructure Schottky junction were investigated. The barrier height ( b) and ideally factor (η) estimated from the thermionic emission (TE) model were found to be temperature dependent in nature. The conventional Richardson plot of the ln(I s/T 2) versus 1/kT has two regions: the first region (150-300 K) and the second region (350-500 K). The values of Richardson constant (A +) obtained from this plot are found to be lower than the theoretical value of n-type GaN. The variation in the barrier heights was explained by a double Gaussian distribution with mean barrier height values ( b ) of 1.17 and 0.69 eV with standard deviation (� s) of 0.17 and 0.098 V, respectively. The modified Richardson plot in the temperature range 350-500 K gives the Richardson constant which is close to the theoretical value of n-type GaN. Hence, the current mechanism is explained by TE by assuming the Gaussian distribution of barrier height. At low temperature 150-300 K, the absence of temperature dependent tunneling parameters indicates the tunneling assisted current transport mechanism. © 2012 American Institute of Physics.
Resumo:
We present the study involving the dependence of carrier concentration of InN films, grown on GaN templates using the plasma assisted molecular beam epitaxy system, on growth temperature. The influence of InN carrier concentration on the electrical transport behavior of InN/GaN heterostructure based Schottky junctions is also discussed. The optical absorption edge of InN film was found to be strongly dependent on carrier concentration, and was described by Kane's k.p model, with non-parabolic dispersion relation for carrier in the conduction band. The position of the Fermi-level in InN films was modulated by the carrier concentration in the InN films. The barrier height of the heterojunctions as estimated from I-V characteristic was also found to be dependent on the carrier concentration of InN. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Flexible and thermally stable, freestanding hybrid organic/inorganic based polymer-composite films have been fabricated using a simple solution casting method. Polyvinylbutyral and amine functionalized mesoporous silica were used to synthesize the composite. An additional polyol-''tripentaerythritol''-component was also used to increase the -OH group content in the composite matrix. The moisture permeability of the composites was investigated by following a calcium degradation test protocol. This showed a reduction in the moisture permeability with the increase in functionalized silica loadings in the matrix. A reduction in permeability was observed for the composites as compared to the neat polymer film. The thermal and mechanical properties of these composites were also investigated by various techniques like thermogravimetric analysis, differential scanning calorimetry, tensile experiments, and dynamic mechanical analysis. It was observed that these properties detonate with the increase in the functionalized silica content and hence an optimized loading is required in order to retain critical properties. This deterioration is due to the aggregation of the fillers in the matrix. Furthermore, the films were used to encapsulate P3HT (poly 3 hexyl thiophene) based organic Schottky structured diodes, and the diode characteristics under accelerated aging conditions were studied. The weathered diodes, encapsulated with composite film showed an improvement in the lifetime as compared to neat polymer film. The initial investigation of these films suggests that they can be used as a moisture barrier layer for organic electronics encapsulation application.