145 resultados para Plasma FFA
Resumo:
The surface instability of a semi-infinite plasma immersed in a high frequency field is investigated. When the natural Langmuir frequency of the surface is nearly equal to the frequency of the high frequency field, the dispersion relation predicts build-up of oscillations with a growth rate comparable with the real part of the frequency. Threshold values above which the instability is possible are derived.
Resumo:
Surface instability of a collisionless semi-infinite current carrying plasma is studied. The semi-infinite plasma bounded by a plane surface is under the influence of a high frequency (hf) field. There are two classes of surface modes. One is a normal extension of zero high frequency field and the other due entirely to the presence ofhf field. As expected, with the increase in thehf field, the growth rates of the surface instabilities decrease. There are regions defined by the electron drift velocityu where the unstable surface and bulk regions overlap. The interesting result is that unlike the bulk plasma, there is a stable region on theu-axis flanked by two unstable regions. The width of this stable region increases with the increase in the field strength.
Resumo:
By using a perturbation technique, the Korteweg-de Vries equation is derived for a mixture of warm-ion fluid and hot, isothermal electrons. Stationary solutions are obtained for this equation and are compared with the corresponding solutions for a mixture consisting of cold-ion fluid and hot, isothermal electrons.
Resumo:
A method for finding the roots of the equation D = O in a multicomponent plasma with positive and negative ion species is given. The use of dispersion diagrams (omega-k diagrams) for right- and left-circularly polarized waves is made to locate these roots in pass or stop bands. ©1973 American Institute of Physics.
Resumo:
The rate of NADH oxidation with oxygen as the acceptor is very low in mouse liver plasma membrane and erythrocyte membrane. When vanadate is added, this rate is stimulated 10- to 20-fold. The absorption spectrum of vanadate does not change with the disappearance of NADH. The reaction is inhibited by superoxide dismutase, and there is no activity under an argon atmosphere. This indicates that oxygen is the electron acceptor and the reaction is mediated by superoxide. The vanadate stimulation is not limited to plasma membrane. Golgi apparatus and endoplasmic reticulum show similar increase in NADH oxidase activity when vanadate is added. The endomembranes have significant vanadate-stimulated activity with both NADH and NADPH. The vanadate-stimulated NADH oxidase in plasma membrane is inhibited by compounds, which inhibit NADH dehydrogenase activity: catechols, anthracycline drugs and manganese. This activity is stimulated by high phosphate and sulfate anion concentrations.
Resumo:
Retinol-binding protein and prealbumin were isolated from duck plasma by chromatography on DEAE-cellulose-and DEAE-Sephadex A-50, gel filtration on Sephadex G- 100 and preparative Polyacrylamide gel electrophoresis. The molecular weights of the retinolbinding protein-prealbumin complex, prealbumin and retinol-binding protein were found to be 75,000, 55,0000 and 20,000, respectively. On sodium dodecyl sulphate Polyacrylamide gel electrophoresis, prealbumin dissociated into identical subunits exhibiting a molecular weight of 13,500. Retinol-binding protein exhibited microheterogeneity on electrophoresis, whereas prealbumin moved as a single band unlike the multiple bands observed in chicken and rat.The ultraviolet and fluorescence spectra of the two proteins were similar to those isolated from other species. No carbohydrate moiety was detected in either retinol-binding protein or prealbumin. Duck retinol-binding protein and prealbumin showed cross-reactivity with their counterparts in chicken but differed immunologically from those of goat and man. Retinolbinding protein and prealbumin could be dissociated at low ionic strength, in 2M urea, by CMsephadex chromatography or on preparative electrophoresis. Although the transport of retinol in duck plasma is mediated by carrier proteins as in other species, it is distinguished by the absence of microheterogeneity in prealbumin and of an apo-retinol-binding protein form that could be transported in the plasma.
Resumo:
Purity of the glow-discharge plasma at atmospheric pressure for surface modification applications is always debatable, since it works at ambient atmosphere. We have demonstrated on the use of optical emission spectroscopy to test the purity of this kind of plasma. The effect of gas flow pattern, nature of gas, and its flow rate on the plasma chemistry was studied. The importance of proper system design in maintaining a uniform flow of heavy and inert gases as carrier gas in atmospheric glow-discharge plasma was confirmed. The surface of a plasma-treated PET sample was analyzed using X-ray photoelectron spectroscopy to verify the studies on plasma purity done using emission spectrum.
Resumo:
The authors derive the Korteweg-de Vries equation in a multicomponent plasma that includes any number of positive and negative ions. The solitary wave solutions are also found explicitly for the case of isothermal and non-isothermal electrons.
Resumo:
Electromagnetic surface waves propagating along the plasma-vacuum interface parallel to an applied magnetic field are studied. New modes for which the field components are degenerate, not reported in the earlier investigation of Kotsarenko and Fedorchenko (1969), are found and discussed. These modes, which propagate up to the plasma frequency for all values of the magnetic field, start as forward waves at low frequency but smoothly change into the backward mode as the frequency increases.
Resumo:
Using a perturbation technique, we derive Modified Korteweg—de Vries (MKdV) equations for a mixture of warm-ion fluid (γ i = 3) and hot and non-isothermal electrons (γ e> 1), (i) when deviations from isothermality are finite, and (ii) when deviations from isothermality are small. We obtain stationary solutions for these equations, and compare them with the corresponding solutions for a mixture of warm-ion fluid (γ i = 3) and hot, isothermal electrons (γ i = 1).
Resumo:
Two variants of a simplified procedure for the isolation of plasma membrane fractions from monkey and rat brains, are described. The preparations show marked enrichments in the marker enzymes, (Na+-K+) adenosine triphosphatase, acetylcholinesterase, 5′-nucleotidase and adenylate cyclase. Lipid analysis and a protein electrophoretic pattern are presented. An enzymatic check has been made to assess for contamination by other cellular organelles. The amino acid composition of brain membrane proteins show a resemblance to the reported composition of erythrocyte ghost proteins but differ from myelin proteins.
Resumo:
Full dispersion curves including the effect of ions are presented for the electromagnetic surface waves propagating over a plasma-plasma interface in the direction perpendicular to the magnetic field which is parallel to the interface. The effect of ions and finite density ratio of the two media at the boundary give rise to various new features in the dispersion characteristics of these surface waves.
Resumo:
An attempt has been made to generalise a method developed earlier for the qualitative assessment of crossover frequencies (existence and behaviour) in multicomponent plasmas with one negative ion species to plasmas with any number of positive and negative ion species. It is shown that a great deal of qualitative information can be obtained regarding the crossover frequencies for any given plasma model without recourse to cumbersome numerical study. Possible applications of the study in the interpretation of frequency time spectrograms for the detection of negative ion whistlers and in the measurement of concentrations and masses of negative ions are noted.
Resumo:
The nonlinear theory of the instability caused by an electron beam-plasma interaction is studied. A nonlinear analysis has been carried out using many-body methods. A general formula for a neutral collisionless plasma, without external fields, is derived. This could be used for calculating the saturation levels of other instabilities. The effect of orbit perturbation theory on the beam-plasma instability is briefly reviewed.
Resumo:
The theoretical analysis, based on the perturbation technique, of ion-acoustic waves in the vicinity of a Korteweg-de Vries (K-dV) equation derived in a plasma with some negative ions has been made. The investigation shows that the negative ions in plasma with isothermal electrons introduced a critical concentration at which the ion-acoustic wave plays an important role of wave-breaking and forming a precursor while the plasma with non-isothermal electrons has no such singular behaviour of the wave. These two distinct features of ion waves lead to an overall different approach of present study of ion-waves. A distinct feature of non-uniform transition from the nonisothermal case to isothermal case has been shown. Few particular plasma models have been chosen to show the characteristics behaviour of the ion-waves existing in different cases