111 resultados para PRBS signal
Resumo:
The removal of noise and outliers from health signals is an important problem in jet engine health monitoring. Typically, health signals are time series of damage indicators, which can be sensor measurements or features derived from such measurements. Sharp or sudden changes in health signals can represent abrupt faults and long term deterioration in the system is typical of gradual faults. Simple linear filters tend to smooth out the sharp trend shifts in jet engine signals and are also not good for outlier removal. We propose new optimally designed nonlinear weighted recursive median filters for noise removal from typical health signals of jet engines. Signals for abrupt and gradual faults and with transient data are considered. Numerical results are obtained for a jet engine and show that preprocessing of health signals using the proposed filter significantly removes Gaussian noise and outliers and could therefore greatly improve the accuracy of diagnostic systems. [DOI: 10.1115/1.3200907].
Resumo:
Considering a general linear model of signal degradation, by modeling the probability density function (PDF) of the clean signal using a Gaussian mixture model (GMM) and additive noise by a Gaussian PDF, we derive the minimum mean square error (MMSE) estimator. The derived MMSE estimator is non-linear and the linear MMSE estimator is shown to be a special case. For speech signal corrupted by independent additive noise, by modeling the joint PDF of time-domain speech samples of a speech frame using a GMM, we propose a speech enhancement method based on the derived MMSE estimator. We also show that the same estimator can be used for transform-domain speech enhancement.
Resumo:
The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.
Resumo:
Measurable electrical signal is generated when a gas flows over a variety of solids, including doped semiconductors, even at the modest speed of a few meters per second. The underlying mechanism is an interesting interplay of Bernoulli's principle and the Seebeck effect. The electrical signal depends on the square of Mach number (M) and is proportional to the Seebeck coefficient (S) of the solids. Here we present experimental estimate of the response time of the signal rise and fall process, i.e. how fast the semiconductor materials respond to a steady flow as soon as it is set on or off. A theoretical model is also presented to understand the process and the dependence of the response time on the nature and physical dimensions of the semiconductor material used and they are compared with the experimental observations. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
The problem of designing high rate, full diversity noncoherent space-time block codes (STBCs) with low encoding and decoding complexity is addressed. First, the notion of g-group encodable and g-group decodable linear STBCs is introduced. Then for a known class of rate-1 linear designs, an explicit construction of fully-diverse signal sets that lead to four-group encodable and four-group decodable differential scaled unitary STBCs for any power of two number of antennas is provided. Previous works on differential STBCs either sacrifice decoding complexity for higher rate or sacrifice rate for lower decoding complexity.
Resumo:
The matched filter method for detecting a periodic structure on a surface hidden behind randomness is known to detect up to (r(0)/Lambda) gt;= 0.11, where r(0) is the coherence length of light on scattering from the rough part and 3 is the wavelength of the periodic part of the surface-the above limit being much lower than what is allowed by conventional detection methods. The primary goal of this technique is the detection and characterization of the periodic structure hidden behind randomness without the use of any complicated experimental or computational procedures. This paper examines this detection procedure for various values of the amplitude a of the periodic part beginning from a = 0 to small finite values of a. We thus address the importance of the following quantities: `(a)lambda) `, which scales the amplitude of the periodic part with the wavelength of light, and (r(0))Lambda),in determining the detectability of the intensity peaks.
Resumo:
In this two-part series of papers, a generalized non-orthogonal amplify and forward (GNAF) protocol which generalizes several known cooperative diversity protocols is proposed. Transmission in the GNAF protocol comprises of two phases - the broadcast phase and the cooperation phase. In the broadcast phase, the source broadcasts its information to the relays as well as the destination. In the cooperation phase, the source and the relays together transmit a space-time code in a distributed fashion. The GNAF protocol relaxes the constraints imposed by the protocol of Jing and Hassibi on the code structure. In Part-I of this paper, a code design criteria is obtained and it is shown that the GNAF protocol is delay efficient and coding gain efficient as well. Moreover GNAF protocol enables the use of sphere decoders at the destination with a non-exponential Maximum likelihood (ML) decoding complexity. In Part-II, several low decoding complexity code constructions are studied and a lower bound on the Diversity-Multiplexing Gain tradeoff of the GNAF protocol is obtained.
Resumo:
The problem of detecting an unknown transient signal in noise is considered. The SNR of the observed data is first enhanced using wavelet domain filter The output of the wavelet domain filter is then transformed using a Wigner-Ville transform,which separates the spectrum of the observed signal into narrow frequency bands. Each subband signal at the output of the Wigner-ville block is subjected kto wavelet based level dependent denoising (WBLDD)to supress colored noise A weighted sum of the absolute value of outputs of WBLDD is passed through an energy detector, whose output is used as test statistic to take the final decision. By assigning weights proportional to the energy of the corresponding subband signals, the proposed detector approximates a frequency domain matched filter Simulation results are presented to show that the performance of the proposed detector is better than that of the wavelet packet transform based detector.
Resumo:
Constellation Constrained (CC) capacity regions of a two-user Gaussian Multiple Access Channel(GMAC) have been recently reported. For such a channel, code pairs based on trellis coded modulation are proposed in this paper with MPSK and M-PAM alphabet pairs, for arbitrary values of M,toachieve sum rates close to the CC sum capacity of the GMAC. In particular, the structure of the sum alphabets of M-PSK and M-PAMmalphabet pairs are exploited to prove that, for certain angles of rotation between the alphabets, Ungerboeck labelling on the trellis of each user maximizes the guaranteed squared Euclidean distance of the sum trellis. Hence, such a labelling scheme can be used systematically,to construct trellis code pairs to achieve sum rates close to the CC sum capacity. More importantly, it is shown for the first time that ML decoding complexity at the destination is significantly reduced when M-PAM alphabet pairs are employed with almost no loss in the sum capacity.
Resumo:
We propose a unified model for large signal and small signal non-quasi-static analysis of long channel symmetric double gate MOSFET. The model is physics based and relies only on the very basic approximation needed for a charge-based model. It is based on the EKV formalism Enz C, Vittoz EA. Charge based MOS transistor modeling. Wiley; 2006] and is valid in all regions of operation and thus suitable for RF circuit design. Proposed model is verified with professional numerical device simulator and excellent agreement is found. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Inverse filters are conventionally used for resolving overlapping signals of identical waveshape. However, the inverse filtering approach is shown to be useful for resolving overlapping signals, identical or otherwise, of unknown waveshapes. Digital inverse filter design based on autocorrelation formulation of linear prediction is known to perform optimum spectral flattening of the input signal for which the filter is designed. This property of the inverse filter is used to accomplish composite signal decomposition. The theory has been presented assuming constituent signals to be responses of all-pole filters. However, the approach may be used for a general situation.
Resumo:
Static characteristics of an analog-to-digital converter (ADC) can be directly determined from the histogram-based quasi-static approach by measuring the ADC output when excited by an ideal ramp/triangular signal of sufficiently low frequency. This approach requires only a fraction of time compared to the conventional dc voltage test, is straightforward, is easy to implement, and, in principle, is an accepted method as per the revised IEEE 1057. However, the only drawback is that ramp signal sources are not ideal. Thus, the nonlinearity present in the ramp signal gets superimposed on the measured ADC characteristics, which renders them, as such, unusable. In recent years, some solutions have been proposed to alleviate this problem by devising means to eliminate the contribution of signal source nonlinearity. Alternatively, a straightforward step would be to get rid of the ramp signal nonlinearity before it is applied to the ADC. Driven by this logic, this paper describes a simple method about using a nonlinear ramp signal, but yet causing little influence on the measured ADC static characteristics. Such a thing is possible because even in a nonideal ramp, there exist regions or segments that are nearly linear. Therefore, the task, essentially, is to identify these near-linear regions in a given source and employ them to test the ADC, with a suitable amplitude to match the ADC full-scale voltage range. Implementation of this method reveals that a significant reduction in the influence of source nonlinearity can be achieved. Simulation and experimental results on 8- and 10-bit ADCs are presented to demonstrate its applicability.
Resumo:
We propose a compact model for small signal non quasi static analysis of long channel symmetric double gate MOSFET The model is based on the EKV formalism and is valid in all regions of operation and thus suitable for RF circuit design Proposed model is verified with professional numerical device simulator and excellent agreement is found well beyond the cut-off frequency
Resumo:
A new algorithm based on signal subspace approach is proposed for localizing a sound source in shallow water. In the first instance we assumed an ideal channel with plane parallel boundaries and known reflection properties. The sound source is assumed to emit a broadband stationary stochastic signal. The algorithm takes into account the spatial distribution of all images and reflection characteristics of the sea bottom. It is shown that both range and depth of a source can be measured accurately with the help of a vertical array of sensors. For good results the number of sensors should be greater than the number of significant images; however, localization is possible even with a smaller array but at the cost of higher side lobes. Next, we allowed the channel to be stochastically perturbed; this resulted in random phase errors in the reflection coefficients. The most singular effect of the phase errors is to introduce into the spectral matrix an extra term which may be looked upon as a signal generated coloured noise. It is shown through computer simulations that the signal peak height is reduced considerably as a consequence of random phase errors.