170 resultados para POLYCRYSTALLINE SILICON FILMS


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Bismuth vanadate (Bi2VO5.5, BVO) thin films have been deposited by a pulsed laser ablation technique on platinized silicon substrates. The surface morphology of the BVO thin films has been studied by atomic force microscopy (AFM). The optical properties of the BVO thin films were investigated using spectroscopic ellipsometric measurements in the 300–820 nm wavelength range. The refractive index (n), extinction coefficient (k) and thickness of the BVO thin films have been obtained by fitting the ellipsometric experimental data in a four-phase model (air/BVOrough/BVO/Pt). The values of the optical constants n and k that were determined through multilayer analysis at 600 nm were 2.31 and 0.056, respectively. For fitting the ellipsometric data and to interpret the optical constants, the unknown dielectric function of the BVO films was constructed using a Lorentz model. The roughness of the films was modeled in the Brugmann effective medium approximation and the results were compared with the AFM observations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The sharp increase in microwave power loss (the reverse of what has previously been reported) at the transition temperature in high-Tc superconducting systems such as YBaCu oxide (polycrystalline bulk and thin films obtained by the laser ablation technique) and BiPbSrCaCu oxide is reported. The differences between DC resistivity ( rho ) and the microwave power loss (related to microwave surface resistance) are analysed from the data obtained by a simultaneous measurement set-up. The influence of various parameters, such as preparation conditions, thickness and aging of the sample and the probing frequency (6-18 GHz), on the variation of microwave power loss with temperature is outlined.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline strontium titanate (SrTiO3) films were prepared by a pulsed laser deposition technique on p-type silicon and platinum-coated silicon substrates. The films exhibited good structural and dielectric properties which were sensitive to the processing conditions. The small signal dielectric constant and dissipation factor at a frequency of 100 kHz were about 225 and 0.03 respectively. The capacitance-voltage (C-V) characteristics in metal-insulator-semiconductor structures exhibited anomalous frequency dispersion behavior and a hysteresis effect. The hysteresis in the C-V curve was found to be about 1 V and of a charge injection type. The density of interface states was about 1.79 x 10(12) cm(-2). The charge storage density was found to be 40 fC mu m(-2) at an applied electric field of 200 kV cm(-1). Studies on current-voltage characteristics indicated an ohmic nature at lower voltages and space charge conduction at higher voltages. The films also exhibited excellent time-dependent dielectric breakdown behavior.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Polycrystalline Ti thin films are shown to gradually transform from face-centered cubic (fcc) to hexagonal close-packed structure (hcp) with increasing film thickness. Diffraction stress analysis revealed that the fcc phase is formed in a highly compressive hcp matrix (>= 2 GPa), the magnitude of which decreases with increasing film thickness. A correlation between stress and crystallographic texture vis-a-vis the fcc-hcp phase transformation has been established. The total free energy change of the system upon phase transformation calculated using the experimental results shows that the fcc-hcp transformation is theoretically possible in the investigated film thickness regime (144-720 nm) and the hcp structure is stable for films thicker than 720 nm, whereas the fcc structure can be stabilized in Ti films much thinner than 144 nm. (C) 2011 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Thin films of BaZrO3 (BZ) were grown using a pulsed laser deposition technique on platinum coated silicon substrates. Films showed a polycrystalline perovskite structure upon different annealing procedures of in-situ and ex-situ crystallization. The composition analyses were done using Energy dispersive X-ray analysis (EDAX) and Secondary ion mass spectrometry (SIMS). The SIMS analysis revealed that the ZrO2 formation at the right interface of substrate and the film leads the degradation of the device on the electrical properties in the case of ex-situ crystallized films. But the in-situ films exhibited no interfacial formation. The dielectric properties have been studied for the different temperatures in the frequency regime of 40 Hz to 100kHz. The response of the film to external ac stimuli was studied at different temperatures, and it showed that ac conductivity values in the limiting case are correspond to oxygen vacancy motion. The electrical modulus is fitted to a stretched exponential function and the results clearly indicate the presence of the non-Debye type of dielectric relaxation in these materials.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Zinc oxide (ZnO) thin films have been prepared on silicon substrates by sol-gel spin coating technique with spinning speed of 3,000 rpm. The films were annealed at different temperatures from 200 to 500 A degrees C and found that ZnO films exhibit different nanostructures at different annealing temperatures. The X-ray diffraction (XRD) results showed that the ZnO films convert from amorphous to polycrystalline phase after annealing at 400 A degrees C. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on pre-cleaned silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased with increasing annealing temperature. The oxide capacitance was measured at different annealing temperatures and different signal frequencies. The dielectric constant and the loss factor (tan delta) were increased with increase of annealing temperature.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Silicon oxide films were deposited by reactive evaporation of SiO. Parameters such as oxygen partial pressure and substrate temperature were varied to get variable and graded index films. Films with a refractive index in the range 1.718 to 1.465 at 550 nm have been successfully deposited. Films deposited using ionized oxygen has the refractive index 1.465 at 550 nm and good UV transmittance like bulk fused quartz. Preparation of graded index films was also investigated by changing the oxygen partial pressure during deposition. A two layer antireflection coating at 1064nm has been designed using both homogeneous and inhomogeneous films and studied their characteristics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

0.85PbMg(1/3)Nb(2/3)O(3)-0.15PbTiO(3) ferroelectric-relaxor thin films have been deposited on La(0.5)nSr(0.5)CoO(3)/(1 1 1) Pt/TiO(2)/SiO(2)/Si by pulsed laser ablation at various oxygen partial pressures in the range 0.05 to 0.4 Torr. All the films have a rhombohedral perovskite structure. The grain morphology and orientation are drastically affected by the oxygen pressure, studied by x-ray diffraction and scanning electron microscopy. The domain structure investigations by dynamic contact electrostatic force microscopy have revealed that the distribution of polar nanoregions and their dynamics is influenced by the grain morphology, orientation and more importantly, oxygen vacancies. The correlation length extracted from autocorrelation function images has shown that the polarization disorder decreases with oxygen pressure up to 0.3 Torr. The presence of polarized domains and their electric field induced switching is discussed in terms of internal bias field and domain wall pinning. Film deposited at 0.4 Torr presents a curious case with unique triangular grain morphology and large polarization disorder.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Titanium dioxide (TiO(2)) films have been deposited on glass and p-silicon (1 0 0) substrates by DC magnetron sputtering technique to investigate their structural, electrical and optical properties. The surface composition of the TiO(2) films has been analyzed by X-ray photoelectron spectroscopy. The TiO(2) films formed on unbiased substrates were amorphous. Application of negative bias voltage to the substrate transformed the amorphous TiO(2) into polycrystalline as confirmed by Raman spectroscopic studies. Thin film capacitors with configuration of Al/TiO(2)/p-Si have been fabricated. The leakage current density of unbiased films was 1 x10(-6) A/cm(2) at a gate bias voltage of 1.5 V and it was decreased to 1.41 x 10(-7) A/cm(2) with the increase of substrate bias voltage to -150 V owing to the increase in thickness of interfacial layer of SiO(2). Dielectric properties and AC electrical conductivity of the films were studied at various frequencies for unbiased and biased at -150 V. The capacitance at 1 MHz for unbiased films was 2.42 x 10(-10) F and it increased to 5.8 x 10(-10) F in the films formed at substrate bias voltage of -150 V. Dielectric constant of TiO(2) films were calculated from capacitance-voltage measurements at 1 MHz frequency. The dielectric constant of unbiased films was 6.2 while those formed at -150 V it increased to 19. The optical band gap of the films decreased from 3.50 to 3.42 eV with the increase of substrate bias voltage from 0 to -150 V. (C) 2011 Elsevier B. V. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

ZnO:Al thin films were prepared on glass and silicon substrates by the sol-gel spin coating method. The x-ray diffraction (XRD) results showed that a polycrystalline phase with a hexagonal structure appeared after annealing at 400 degrees C for 1 h. The transmittance increased from 91 to about 93% from pure ZnO films to ZnO film doped with 1 wt% Al and then decreased for 2 wt% Al. The optical band gap energy increased as the doping concentration was increased from 0.5 wt% to 1 wt% Al. The metal oxide semiconductor (MOS) capacitors were fabricated using ZnO films deposited on silicon (100) substrates and electrical properties such as current versus voltage (I-V) and capacitance versus voltage (C-V) characteristics were studied. The electrical resistivity decreased and the leakage current increased with an increase of annealing temperature. The dielectric constant was found to be 3.12 measured at 1 MHz. The dissipation value for the film annealed at 300 degrees C was found to be 3.1 at 5 V. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

DC reactive magnetron sputtering technique was employed for deposition of titanium dioxide (TiO2) films. The films were formed on Corning glass and p-Si (100) substrates by sputtering of titanium target in an oxygen partial pressure of 6x10-2 Pa and at different substrate temperatures in the range 303 673 K. The films formed at 303 K were X-ray amorphous whereas those deposited at substrate temperatures?=?473 K were transformed into polycrystalline nature with anatase phase of TiO2. Fourier transform infrared spectroscopic studies confirmed the presence of characteristic bonding configuration of TiO2. The surface morphology of the films was significantly influenced by the substrate temperature. MOS capacitor with Al/TiO2/p-Si sandwich structure was fabricated and performed currentvoltage and capacitancevoltage characteristics. At an applied gate voltage of 1.5 V, the leakage current density of the device decreased from 1.8?x?10-6 to 5.4?x?10-8 A/cm2 with the increase of substrate temperature from 303 to 673 K. The electrical conduction in the MOS structure was more predominant with Schottky emission and Fowler-Nordheim conduction. The dielectric constant (at 1 MHz) of the films increased from 6 to 20 with increase of substrate temperature. The optical band gap of the films increased from 3.50 to 3.56 eV and refractive index from 2.20 to 2.37 with the increase of substrate temperature from 303 to 673 K. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fourier Transform Infrared (FTIR) spectroscopic analysis has been carried out on the hydrogenated amorphous silicon (a-Si:H) thin films deposited by DC, pulsed DC (PDC) and RF sputtering process to get insight regarding the total hydrogen concentration (C-H) in the films, configuration of hydrogen bonding, density of the films (decided by the vacancy and void incorporation) and the microstructure factor (R*) which varies with the type of sputtering carried out at the same processing conditions. The hydrogen incorporation is found to be more in RF sputter deposited films as compared to PDC and DC sputter deposited films. All the films were broadly divided into two regions namely vacancy dominated and void dominated regions. At low hydrogen dilutions the films are vacancy dominated and at high hydrogen dilutions they are void dominated. This demarcation is at C-H = 23 at.% H for RF, C-H = 18 at.% H for PDC and C-H = 14 at.% H for DC sputter deposited films. The microstructure structure factor R* is found to be as low as 0.029 for DC sputter deposited films at low C-H. For a given C-H, DC sputter deposited films have low R* as compared to PDC and RF sputter deposited films. Signature of dihydride incorporation is found to be more in DC sputter deposited films at low C-H.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We have developed a unique single-step chemical vapor deposition (CVD) route for the synthesis of composite thin films containing carbon nanotubes (CNTs). CVD was carried out in an inert ambient using only iron(III) acetylacetonate as the precursor. Depositions were conducted at 700 degrees C on stainless steel substrates in argon ambient in the absence of any reactive gases (such as oxygen, hydrogen). By changing the deposition parameters, especially the pressure in the CVD reactor, the form of carbon deposited could be changed from amorphous to carbon nanotubes, the latter resulting in Fe-Fe3O4-CNT films. X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy together confirm the formation of the three-component composite and illustrate the nanoscale mixing of the components. Elemental iron formed in this process was protected from oxidation by the co-deposited carbon surrounding it. Irrespective of the substrate used, a composite coating with CNTs was formed under optimum conditions, as verified by analyses of the film formed on polycrystalline alumina and silicon substrates.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mechanical properties of thin films such as residual stress and hardness are of paramount importance from the device fabrication point of view. Intrinsic stress in sputtered films can be tensile or compressive as decided by the number density and the energy of the plasma species striking the growing film. In the presence of hydrogen we analyzed the applicability of idealized stress reversal curve for amorphous silicon thin films deposited by DC, pulsed DC (PDC) and RF sputtering. We are successfully able to correlate the microstructure with the stress reversal and hardness. We observed a stress reversal from compressive to tensile with hydrogen incorporation. It was found that unlike in idealized stress reversal curve case, though the energy of plasma species is less in DC plasma, DC deposited films exhibit more compressive stress, followed by PDC and RF deposited films. A tendency towards tensile stress from compressive stress was observed at similar to 13, 18 and 23 at%H for DC, PDC and RF deposited films respectively, which is in exact agreement with the vacancy to void transition in the films. Regardless of the sputtering power mode, the hardness of a-Si:H films is found to be maximum at C-H similar to 10 at%H. Enhancement in hardness with C-H (up to C-H similar to 10 at%H) is attributed to increase of Si-H bonds. Beyond C-H similar to 10 at%H, hardness starts falling. (C) 2015 Elsevier Ltd. All rights reserved.