177 resultados para Noncommutative Differential Forms
Resumo:
We explore the effect of two-dimensional position-space noncommutativity on the bipartite entanglement of continuous-variable systems. We first extend the standard symplectic framework for studying entanglement of Gaussian states of commutative systems to the case of noncommutative systems residing in two dimensions. Using the positive partial transpose criterion for separability of bipartite states, we derive a condition on the separability of a noncommutative system that is dependent on the noncommutative parameter theta. We then consider the specific example of a bipartite Gaussian state and show the quantitative reduction in entanglement originating from noncommutative dynamics. We show that such a reduction in entanglement for a noncommutative system arising from the modification of the variances of the phase-space variables (uncertainty relations) is clearly manifested between two particles that are separated by small distances.
Resumo:
he Dirac generator formalism for relativistic Hamiltonian dynamics is reviewed along with its extension to constraint formalism. In these theories evolution is with respect to a dynamically defined parameter, and thus time evolution involves an eleventh generator. These formulations evade the No-Interaction Theorem. But the incorporation of separability reopens the question, and together with the World Line Condition leads to a second no-interaction theorem for systems of three or more particles. Proofs are omitted, but the results of recent research in this area is highlighted.
Resumo:
We analyze aspects of symmetry breaking for Moyal spacetimes within a quantization scheme which preserves the twisted Poincare´ symmetry. Towards this purpose, we develop the Lehmann-Symanzik- Zimmermann (LSZ) approach for Moyal spacetimes. The latter gives a formula for scattering amplitudes on these spacetimes which can be obtained from the corresponding ones on the commutative spacetime. This formula applies in the presence of spontaneous breakdown of symmetries as well. We also derive Goldstone’s theorem on Moyal spacetime. The formalism developed here can be directly applied to the twisted standard model.
Resumo:
This paper presents the architecture of a fault-tolerant, special-purpose multi-microprocessor system for solving Partial Differential Equations (PDEs). The modular nature of the architecture allows the use of hundreds of Processing Elements (PEs) for high throughput. Its performance is evaluated by both analytical and simulation methods. The results indicate that the system can achieve high operation rates and is not sensitive to inter-processor communication delay.
Resumo:
The development of algorithms, based on Haar functions, for extracting the desired frequency components from transient power-system relaying signals is presented. The applications of these algorithms to impedance detection in transmission line protection and to harmonic restraint in transformer differential protection are discussed. For transmission line protection, three modes of application of the Haar algorithms are described: a full-cycle window algorithm, an approximate full-cycle window algorithm, and a half-cycle window algorithm. For power transformer differential protection, the combined second and fifth harmonic magnitude of the differential current is compared with that of fundamental to arrive at a trip decision. The proposed line protection algorithms are evaluated, under different fault conditions, using realistic relaying signals obtained from transient analysis conducted on a model 400 kV, 3-phase system. The transformer differential protection algorithms are also evaluated using a variety of simulated inrush and internal fault signals.
Resumo:
This paper proposes a novel application of differential evolution to solve a difficult dynamic optimisation or optimal control problem. The miss distance in a missile-target engagement is minimised using differential evolution. The difficulty of solving it by existing conventional techniques in optimal control theory is caused by the nonlinearity of the dynamic constraint equation, inequality constraint on the control input and inequality constraint on another parameter that enters problem indirectly. The optimal control problem of finding the minimum miss distance has an analytical solution subject to several simplifying assumptions. In the approach proposed in this paper, the initial population is generated around the seed value given by this analytical solution. Thereafter, the algorithm progresses to an acceptable final solution within a few generations, satisfying the constraints at every iteration. Since this solution or the control input has to be obtained in real time to be of any use in practice, the feasibility of online implementation is also illustrated.
Resumo:
In this article, we give sufficient condition in the form of integral inequalities to establish the oscillatory nature of non linear homogeneous differential equations of the form where r, q, p, f and g are given data. We do this by separating the two cases f is monotonous and non monotonous.
Resumo:
A study has been made of the differential thermal analysis of (i) potassium perchlorate in powdered form, (ii) potassium perchlorate in pelletized form, (iii) potassium perchlorate recrystallized from liquid NH3, and (iv) potassium perchlorate preheated for 24 hours at 375°. Pretreatment of potassium perchlorate leads to a desensitization of both endothermic and exothermic processes. Additionally, the pretreatment tends to convert the symmetric exotherm into an asymmetric exotherm due to merging of the two exotherms. An analysis of the factors causing asymmetry in the exotherm has thrown fresh light on the mechanism of thermal decomposition of potassium perchlorate.
Resumo:
The prefered tautomer(s) of hydroxycyclotriphosphazatrienes and prototropic exchange in solution have been established by 31P n.m.r. spectroscopy, thus confirming predictions deduced from basicity calculations; the X-ray structure of N3P3Ph2(OMe)3OH shows that it exists as the hydrogen-bonded dimer of the oxophosphazadiene tautomer in which a proton is adjacent to the PPh2 group.
Resumo:
The development of a highly sensitive liquid bubble manometer which can measure low differential heads to an accuracy of 0.01 mm of water is reported in this paper. The liquid bubble consists of two miscible liquids,benzaldehyde and normal hexane (each of which is immiscible in water) in such a proportion that the bubble density is within ±2 % of the density of water. The movement of the liquid bubble, which occupies the full cross-sectional area of the glass tube containing water in the manometer, is indicative of the applied differential head to a magnified scale. The manometer is found to give excellent results in open channel flow and is recommended for use for differential heads up to 2 cm of water. The manometer is economical, simple in fabrication and with simple modifications the sensitivity of the manometer can be increased to more than 0.01 mm of water.
Resumo:
A method has been presented for constructing non-separable solutions of homogeneous linear partial differential equations of the type F(D, D′)W = 0, where D = ∂/∂x, D′ = ∂/∂y, Image where crs are constants and n stands for the order of the equation. The method has also been extended for equations of the form Φ(D, D′, D″)W = 0, where D = ∂/∂x, D′ = ∂/∂y, D″ = ∂/∂z and Image As illustration, the method has been applied to obtain nonseparable solutions of the two and three dimensional Helmholtz equations.
Resumo:
Differential scanning calorimetric studies on ammonium perchlorate have been carried out. The enthalpy values for the phase transition endotherm and the two exotherms have been reported in the present communication. A new method has been developed for the estimation of kinetic parameters from DSC the mograms. The values for activation energy as calculated by the above method for low temperature and high temperature exotherms are in close agreement with literature values. The present studies also confirm the presence of small exothermic peaks at the initial stages of high temperature exotherm. Explanation for the same has been given.
Resumo:
A mathematical model of social interaction in the form of two coupler! first-order non-linear differential equations, forms the topic of this study. This non-conservative model io representative of such varied social interaction problems as coexisting sub-populations of two different species, arms race between two rival countries and the like. Differential transformation techniques developed elsewhere in the literature are seen to be effective tools of dynamic analysis of this non-linear non-conservative mode! of social interaction process.
Resumo:
Canonical forms for m-valued functions referred to as m-Reed-Muller canonical (m-RMC) forms that are a generalization of RMC forms of two-valued functions are proposed. m-RMC forms are based on the operations ?m (addition mod m) and .m (multiplication mod m) and do not, as in the cases of the generalizations proposed in the literature, require an m-valued function for m not a power of a prime, to be expressed by a canonical form for M-valued functions, where M > m is a power of a prime. Methods of obtaining the m-RMC forms from the truth vector or the sum of products representation of an m-valued function are discussed. Using a generalization of the Boolean difference to m-valued logic, series expansions for m-valued functions are derived.
Resumo:
A finite gain differential amplifier is used along with a few passive RC elements to simulate an inductor. Methods for obtaining low Q inductance and frequency dependent high QI inductance are described. Sensitivity analysis when the gain varies is also included.