43 resultados para N-alkylation
Resumo:
Knoevenagel condensation of 2-acylcyclohexanones or 2-ethoxycarbonylcyclohexanone with either cyanoacetamide or malononitrile followed by silver salt alkylation gave the 5,6,7,8-tetrahydroisoquinolines (3a–i). Chromic acid oxidation of the 5,6,7,8-tetrahydroisoquinolines (3a–i) to the corresponding tetralones (4a–i) followed by sodium borohydride reduction and p-toluenesulphonic acid-catalysed dehydration of the resulting alcohols (5a–i) gave the 5,6-dihydroisoquinolines (6a–i). Reaction of 5,6-dihydroisoquinolines (6a–g) with potassium amide in liquid ammonia gave a mixture of the 1,3-dihydroisoquinolines (7a–g) and the isoquinolines (8a–g). The C-1 unsubstituted 1,2-dihydroisoquinoline (7c) was found to be very unstable. In the case of the 5,6-dihydroisoquinolines (6h and 6i), reaction of potassium amide in liquid ammonia resulted in a mixture of 1-aminoisoquinoline (9) and the isoquinolines (8h and 8i). All the above compounds have been characterised by spectral data. A probable pathway for the formation of the 1,2-dihydroisoquinolines (7a–g) and the isoquinolines (8a–i) is suggested.
Resumo:
The three possible isomers of cyclohexane-1,2,3-tricarboxylic acid were synthesised and separated in order to study the regiospecificity and stereoselectivity of the α-C alkylation of their trimethyl esters. No definitive conclusions could be reached on this aspect for reasons which became apparent in the course of the work. However, the three independent methods adopted for the synthesis of the isomeric tricarboxylic acids have given dramatically different isomer compositions. The reasons are explored in this paper.
Resumo:
Knoevenagel condensation of 2-acylcyclohexanones or 2-ethoxycarbonylcyclohexanone with either cyanoacetamide or malononitrile followed by silver salt alkylation gave the 5,6,7,8-tetrahydroisoquinolines (3a–i). Chromic acid oxidation of the 5,6,7,8-tetrahydroisoquinolines (3a–i) to the corresponding tetralones (4a–i) followed by sodium borohydride reduction and p-toluenesulphonic acid-catalysed dehydration of the resulting alcohols (5a–i) gave the 5,6-dihydroisoquinolines (6a–i). Reaction of 5,6-dihydroisoquinolines (6a–g) with potassium amide in liquid ammonia gave a mixture of the 1,3-dihydroisoquinolines (7a–g) and the isoquinolines (8a–g). The C-1 unsubstituted 1,2-dihydroisoquinoline (7c) was found to be very unstable. In the case of the 5,6-dihydroisoquinolines (6h and 6i), reaction of potassium amide in liquid ammonia resulted in a mixture of 1-aminoisoquinoline (9) and the isoquinolines (8h and 8i). All the above compounds have been characterised by spectral data. A probable pathway for the formation of the 1,2-dihydroisoquinolines (7a–g) and the isoquinolines (8a–i) is suggested.
Resumo:
Pterosin E (2,5,7-trimethyl-1-oxoindan-6-ylacetic acid)(Ia), a naturally occurring sesquiterpenoid has been synthesized starting from -bromomesitylene (IIIa). Alkylation of diethyl methylmalonate with (IIIa) gave the diester (IIIb) which was converted into the cyanomethyl diester (IVb). Hydrolysis of (IVb) to the dicarboxylic acid (V) followed by its cyclodehydration gave pterosin E.
Resumo:
A stereoselective total synthesis of the tricyclic sesquiterpene (−)-seychellene, starting from (R)-carvone via (R)-3-methylcarvone has been accomplished, employing a combination of intermolecular Michael addition–intramolecular Michael addition sequence, a stereoselective hydrogenation, and an intramolecular alkylation reaction.
Resumo:
Synthetic approach to 3-alkoxythapsane, comprising of the carbon framework of a small group of sesquiterpenes containing three contiguous quaternary carbon atoms has been described. A combination of alkylation, orthoester Claisen rearrangement and intramolecular diazoketone cyclopropanation has been employed for the creation of the three requisite contiguous quaternary carbon atoms.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
Peptide disulfides are unstable under alkaline conditions, resulting in the formation of products containing lanthionine and polysulfied linkages. Electrospray ionization mass spectrometry has been used to characterize major species obtained when cyclic and acyclic peptide disulfides are exposed to alkaline media. Studies on a model cyclic peptide disulfide (Boc - Cys - Pro - Leu - Cys - NHMe) and an acyclic peptide, oxidized glutathione, bis ((gamma)Glu Cys - Gly - COOH), are described. Disulfide cleavage reactions are initiated by the abstraction of (CH)-H-alpha or (CH)-H-beta protons of Cys residues, with Subsequent elimination of H2S or H2S2. The buildup of reactive thiol species which act on intermediates containing dehydroalanine residues, rationalizes the formation of lanthionine and polysulfide products. In the case of the cyclic peptide disulfide, the formation of cyclic products is facilitated by the intramolecular nature of the Michael addition reaction of thiols to the dehydroalanine residue. Mass spectral evidence for the intermediate species is presented by using alkylation of thiol groups as a trapping method. Mass spectral fragmentation in the negative ion mode of the peptides derived from trisulfides and tetrasulfides results in elimination of S-2. (J Am Soc Mass Spectrom 2009, 20, 783-791) (C) 2009 American Society for Mass Spectrometry.
Resumo:
A synthesis of 3-cyano-3-methyl-7-methoxychroman-4-one is reported. The structure of an “abnormal” product obtained during isomerization (III) with potassium t-butoxide in t-butanol, followed by alkylation with methyl iodide has been proved to be 3-t-butoxy-2-cyano- 2-mehthyl-2′,4′-dimethoxypropiophenone (IVa).
Resumo:
A study has been made of the stereochemistry of three of the four possible configurational isomers of trimethyl 1-methylcyclohexane-1,2,3-tricarboxylate. Two of the isomers undergo highly stereoselective methylation at the 3-position; the third cannot be methylated under similar conditions. Conformations have been suggested for these three isomers on the basis of n.m.r. results. It is thought that axial ester groups at the 1-position in the first two solvate the axial protons at the 3-position and facilitate their removal by trityl anion, while in the third, which has an axial methyl at the 1-position, the effect is not possible and the anion is not formed. The role of A(1.3) strain in causing the high stereoselectivity and position-specificity in the two cases where alkylation does take place and the reasons for slow inversion at the anion centre at position 3 in one of them are discussed.
Resumo:
The total synthesis of 8-isotestosterone (II) and the corresponding anthracene analogue (III) following the benzohydrindane route is reported. Catalytic hydrogenation of trans-1β-acetoxy-8-methyl-4,5-(3′-methyl-4′-hydroxybenzo)-hydrindane (V) followed by oxidation has furnished two isomeric tricyclic keto acetates, viz. 1β,2α-(3′-acetoxycyclopentano)-2,5-dimethyl-6-keto-1α,2,3,4,4aα,-5α,6,7,8,8aα-decahydronaphthalene (VII) and 1β,2α-(3′-acetoxycyclopentano)-2,5-dimethyl-6-keto-1α,2,3,4,4aβ,5,6,7,8,8aβ-decahydronaphthalene (IX) which are cis-non-steroid and cis-steroid configurations of the same cyclopentano-cis-decalins. A difference in the direction of enolization of the keto acetate (VII) in alkylation reaction and enol acetylation towards the methine and the methylene carbon atoms respectively has been observed.
Resumo:
Starting from 6-methoxynaphthaldehyde-2, 2-carboxy-7-methoxy-1, 2, 3, 4-tetrahydrophenanthrone-4 was prepared. Sodium borohydride reduction of the keto-acid followed by chromic acid oxidation yielded the lactone of 2-carboxy-4-hydroxy-7-methoxy-1, 2, 3, 4-tetrahydrophenanthrone. Alkylation of the lactone of 2-carboxy-4-hydroxy-6-methoxytetralone was not promising.
Resumo:
Methyl 7-keto-1,2,3,4,4a,5,6,7-octahydronaphthoate (Va) has been prepared by the reduction of 7-methoxy-1,2,3,4-tetrahydronaphthoic acid (III) with lithium and ammonia followed by hydrolysis of the enol ether, esterification and migration of the double bond. Alkylation of Va has led to the substitution at the expected 8-position. Methyl 4-keto-7-methoxy-1,2,3,4-tetrahydronaphthoate (X), an intermediate in the preparation of III, has been converted into methyl 3-methyl-3-cyano-4-keto-7-methoxy-1,2,3,4-tetrahydronaphthoate (XIII).
Resumo:
Rare earth exchanged H–Y zeolites were prepared by simple ion exchange methods at 353 K and have been characterized using different physicochemical techniques. A strong peak around 58 ppm in the 27Al{1H} MAS NMR spectra of these zeolites suggests a tetrahedral coordination for the framework aluminium. Small peak at or near 0 ppm is due to hexa-coordinated extra-framework aluminium and a shoulder peak near 30 ppm is a penta-coordinated aluminium species; [Al(OH)4]−. The vapor-phase benzene alkylation with 1-decene and 1-dodecene was investigated with these catalytic systems. Under the reaction conditions of 448 K, benzene/olefin molar ratio of 20 and time on stream 3 h, the most efficient catalyst was CeH–Y which showed more than 70% of olefin conversion with 48.5% 2-phenyldecane and 46.8%, 2-phenyldodecane selectivities with 1-decene and 1-dodecene respectively.
Resumo:
The first enantiospecific synthesis of a thapsane, containing three contiguous quaternary carbon atoms, is accomplished starting from R-carvone. An intramolecular alkylation and an intramolecular diazoketone cyclopropanation reaction were employed for the stereo- and regiospecific generation of three contiguous quaternary carbon atoms present in the thapsane framework.