46 resultados para LANTHANUM HEXAALUMINATE
Resumo:
Electron transport and magnetic properties of several compositions of the La1-xSx-zYzMnO3 system have been investigated in order to explore the effect of yttrium substitution on the magnetoresistance and related properties of these manganates. Yttrium substitution lowers the T-c and the insulator-metal transition temperature, while increasing the peak resistivity. A comparison of the properties of La1-xSrx-zYzMnO3 with the corresponding La1-xCax-zYzMnO3 compositions shows that the observed properties can be related to the average size of the A-site cations.
Resumo:
Strontium-doped lanthanum chromites, La1−xSrxCrO3, have been synthesised to investigate the effect of strontium doping on the stability and physico-chemical characteristics of the perovskite LaCrO3. Both microscopic and X-ray examinations show that the materials exist as single phase perovskite structure for all compositions up to 50 mole% strontium substitution. The materials have been further characterized by infrared and electron paramagnetic resonance spectra. These materials show a good sinterability even in air at 1773 K. Electrical conductivity of thse perovskites has been measured as a function of temperature. Electrical conductivity has been found to be a maximum at x=0.2. The observed electrical and magnetic properties are consistent with activated polaron transport as the mechanism for electrical conduction in these materials.
Resumo:
Anomalous changes in the infrared intensity of the cobalt-oxygen stretching modes in the infrared spectrum of lanthanum cobaltate (LaCoO3) suggest vibronic coupling. This phenomenon has been studied by infrared vibrational spectroscopy both by temperature-induced changes of spin-state occupation and pressure-induced changes of the crystal field splitting 10Dq.
Resumo:
We examine the magnetic and structural properties of the lanthanum manganite-based double-exchange magnets exhibiting colossal magnetoresistance. A model Hamiltonian containing the double-exchange, superexchange, and the Hubbard terms, with parameters obtained from density–functional calculations (Ref. 1), is studied within a mean-field approximation both at temperature T=0 and T>0 and with the effects of the magnetic field included. The phase diagrams we obtain with magnetic and charge-ordered phases enable us to examine the competition between the double- and superexchange terms as functions of doping and temperature. Our theoretical study provides a qualitative understanding of the phase diagram observed in the experiments. © 1997 American Institute of Physics.
Resumo:
A reversible pressure-induced phase transition in lanthanum nickel ferrate (LaNi0.5Fe0.5O3) manifests itself in the infrared spectrum of the transition metal-oxygen stretching (nu(TM-O)) modes by the emergence of new peaks at pressures greater than similar to 1.4 x 10(9) Pa. Analogies to this transition are made by considering charge transfer in dilanthanum cuprate (La2CuO4) and its modification by partial substitution of copper ions by chromium ions.
Resumo:
The mechanism of field induced phase switching in antiferroelectric lead zirconate and La-modified lead zirconate thin films has been analysed in terms of reversible and irreversible switching process under weak fields as a function of donor concentration. Extension of Rayleigh law of ferromagnetic materials to the present antiferroelectric and modified antiferroelectric compositions have clearly showed that origin of small signal dielectric permittivity is due to reversible domain wall motion. Rayleigh's constant, a measure of irreversible switching process, exhibited a slight increase with lower La3+ concentrations and followed by a gradual fall for higher concentration. This clearly illustrates that donor addition to antiferroelectric thin films controls the domain switching even under weak fields. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
In the system La-Cr-O, there are three ternary oxides (LaCrO4, La2Cr3O12, and La2CrO6) that contain Cr in higher valence states (V or VI). On heating, LaCrO4 decomposes to LaCrO3, La2Cr3O12 to a mixture of LaCrO4 and Cr2O3, and La2CrO6 to LaCrO3 and La2O3 with loss of oxygen. The oxygen potentials corresponding to these decomposition reactions are determined as a function of temperature using solid-state cells incorporating yttria-stabilized zirconia as the electrolyte. Measurements are made from 840K to the decomposition temperature of the ternary oxides in pure oxygen. The standard Gibbs energies of formation of the three ternary oxides are derived from the reversible electromotive force (EMF) of the three cells. The standard enthalpy of formation and standard entropy of the three ternary oxides at 298.15K are estimated. Subsolidus phase relations in the system La-Cr-O are computed from thermodynamic data and displayed as isothermal sections at several temperature intervals. The decomposition temperatures in air are 880 (+/- 3)K for La2Cr3O12, 936 (+/- 3)K for LaCrO4, and 1056 (+/- 4)K for La2CrO6.
Resumo:
The study set out to investigate the compositional inconsistency in lanthanum zirconate system revealed the presence of nonstoichiometry in lanthanum zirconate powders when synthesized by coprecipitation route. X-ray diffraction (XRD) and high-resolution transmission electron microscopy (HRTEM) investigations confirmed the depletion of La3+ ions in the system. Analysis using Vegard's law showed the La/Zr mole ratio in the sample to be around 0.45. An extra step of ultrasonication, introduced during the washing stage followed by the coprecipitation reaction, ensured the formation of stoichiometric La2Zr2O7. Noteworthy is also the difference between crystal sizes in the samples prepared by with and without ultrasonication step. This difference has been explained in light of the formation of individual nuclei and their scope of growth within the precipitate core. The differential scanning calorimetry (DSC) analyses revealed that optimum pH for the synthesis of La2Zr2O7 is about 11. The ultrasonication step was pivotal in assuring consistency in mixing and composition for the lanthanum zirconate powders.
Resumo:
High temperature reaction calorimetry using molten lead berate as solvent has been used to study the thermochemistry of NdMnO3, YMnO3, La1-xSrxMnO3 (with 0 < x < 0.5), and Ln(0.5)Ca(0.5)MnO(3) (with Ln = La, Nd, Y), The enthalpies of formation of these multicomponent oxides from their binary constituents have been calculated from the measured enthalpy of drop solution, The energetic stability of the perovskite depends on the size of the A cation, The enthalpy of formation of YMnO3 (smallest A cation) is more endothermic than those of NdMnO3 and LaMnO3. The energetics of the perovskite also depends on the oxidation state of the B site's ions. In the La1-xSrxMnO3 system, the energetic stability of the structure increases with the Mn4+/Mn3+ ratio, The new values of the enthalpies of oxidations, with reliable standard entropies, were used to plot the phase stability diagram of the lanthanum-manganese-oxygen system in the temperature range 300-1100 K, The LaMnO3/MnO phase boundary evaluated in this study agrees with the one published by Atsumi et nl. calculated from thermogravimetric and conductivity measurements.
Resumo:
Phase diagrams for ternary Ln2O3-H2O-CO2 systems for the entire lanthanide series (except promethium) were studied at temperatures in the range 100–950 °C and pressures up to 3000 bar. The phase diagrams obtained for the heavier lanthanides are far more complex, with the appearance of a number of stable carbonate phases. New carbonates isolated from lanthanide systems (Ln ≡ Tm, Yb, Lu) include Ln6(OH)4(CO3)7, Ln4(OH)6-(CO3)3, Ln2O(OH)2CO3, Ln6O2(OH)8(CO3)3 and Ln12O7(OH)10(CO3)6. Stable carbonate phases common to all the lighter lanthanides are hexagonal LnOHCO3 and hexagonal Ln2O2CO3. Ln2(CO3)3• 3H2O is stable from samarium onwards and orthorhombic LnOHCO3 is stable from gadolinium onwards. On the basis of the appearance of stable carbonates, four different groups of lanthanides were established: lanthanum to neodymium, promethium to europium, terbium to erbium and thulium to lutetium. Gadolinium is the connecting element between groups II and III. This is in accordance with the tetrad classification for f transition elements.
Resumo:
High resolution electron microscopic (HREM) investigation of potassiumbeta-alumina and the related gallate and ferrite has revealed that whereas the aluminate and gallate are highly disordered, consisting of random sequence ofbeta andbetaPrime units, the ferrite is more ordered. The aluminate and gallate are sensitive to electron beam irradiation exhibiting beam-induced damage similar to sodiumbetaPrime-alumina. Significantly, the ferrite is beamstable, the difference in behaviour amongst these related oxides arising from the different mechanisms by which alkali metal nonstoichiometry is accommodated. Barium hexaaluminate and hexaferrite are both highly ordered; specimens prepared by the barium borate flux method exhibit a new radic3a×radic3a superstructure of the hexagonal magnetoplumbite cell.
Resumo:
Barium hexaferrite (M-phase) prepared by the flux method is found to exhibit \checkmark 3 \ut \times \checkmark 3 \ut superstructure similar to barium hexaaluminate.
Resumo:
The thermal decomposition of rare-earth trioxalatocobaltates LnCo(C2O4)3 · x H2O, where Ln = La, Pr, Nd, has been studied in flowing atmospheres of air/oxygen, argon/ nitrogen, carbon dioxide and a vacuum. The compounds decompose through three major steps, viz. dehydration, decomposition of the oxalate to an intermediate carbonate, which further decomposes to yield rare-earth cobaltite as the final product. The formation of the final product is influenced by the surrounding gas atmosphere. Studies on the thermal decomposition of photodecomposed lanthanum trioxalatocobaltate and a mechanical mixture of lanthanum oxalate and cobalt oxalate in 1 : 2 molar ratio reveal that the decomposition behaviour of the two samples is different. The drawbacks of the decomposition scheme proposed earlier have been pointed out, and logical schemes based on results obtained by TG, DTA, DTG, supplemented by various physico-chemical techniques such as gas and chemical analyses, IR and mass spectroscopy, surface area and magnetic susceptibility measurements and X-ray powder diffraction methods, have been proposed for the decomposition in air of rare-earth trioxalatocobaltates as well as for the photoreduced lanthanum salt and a mechanical mixture of lanthanum and cobalt oxalates.
Resumo:
Monophasic BaLaxBi4-xTi4O15 (x = 0, 0.2, 0.4, 0.6 and 0.8) ceramics, fabricated from the powders synthesized via the solid-state reaction route exhibited relaxor behavior. Dielectric properties of the well sintered ceramics were measured in a wide frequency range (1 kHz-1 MHz) at different temperatures (300-750 K). The temperature of dielectri maximum (T-m) was found to decrease significantly from 696 K for an undoped sample (x = 0) to 395 K for the sample corresponding to the composition x = 0.8 accompanied by a decrease in the magnitude ofdielectric maximum (epsilon(m)). The temperature variation of the dielectric constant on the high temperature slope of the peak (T > T-m) was analyzed by using the Lorentz-ype quadratic law and the diffuseness of the peak was found to increase with increasing x. Vogel-Fulcher modelling of dielectric relaxation showed a decrease in freezing temperature (T-VF) (from 678 to 340 K) and an increase in the activation energy (5 to 24 meV) for the frequency dispersion with increase in x (La-3 divided by content). Strength of frequency dispersion of the phase transition increased with lanthanum content. Polarization (P)-electric field (E) hysteresis loops recorded at 373 showed a transition from a nearly squarish to slim loop hysteresis behavior with increasing lanthanum content.