105 resultados para Irrigation scheduling
Resumo:
We study a scheduling problem in a wireless network where vehicles are used as store-and-forward relays, a situation that might arise, for example, in practical rural communication networks. A fixed source node wants to transfer a file to a fixed destination node, located beyond its communication range. In the absence of any infrastructure connecting the two nodes, we consider the possibility of communication using vehicles passing by. Vehicles arrive at the source node at renewal instants and are known to travel towards the destination node with average speed v sampled from a given probability distribution. Th source node communicates data packets (or fragments) of the file to the destination node using these vehicles as relays. We assume that the vehicles communicate with the source node and the destination node only, and hence, every packet communication involves two hops. In this setup, we study the source node's sequential decision problem of transferring packets of the file to vehicles as they pass by, with the objective of minimizing delay in the network. We study both the finite file size case and the infinite file size case. In the finite file size case, we aim to minimize the expected file transfer delay, i.e. expected value of the maximum of the packet sojourn times. In the infinite file size case, we study the average packet delay minimization problem as well as the optimal tradeoff achievable between the average queueing delay at the source node buffer and the average transit delay in the relay vehicle.
Resumo:
Bluetooth is a short-range radio technology operating in the unlicensed industrial-scientific-medical (ISM) band at 2.45 GHz. A piconet is basically a collection of slaves controlled by a master. A scatternet, on the other hand, is established by linking several piconets together in an ad hoc fashion to yield a global wireless ad hoc network. This paper proposes a scheduling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in bluetooth piconets and scatternets. We propose a novel algorithm for scheduling slots to slaves for both piconets and scatternets using multi-layered parameterized policies. Our scheduling scheme works with real data and obtains an optimal feedback policy within prescribed parameterized classes of these by using an efficient two-timescale simultaneous perturbation stochastic approximation (SPSA) algorithm. We show the convergence of our algorithm to an optimal multi-layered policy. We also propose novel polling schemes for intra- and inter-piconet scheduling that are seen to perform well. We present an extensive set of simulation results and performance comparisons with existing scheduling algorithms. Our results indicate that our proposed scheduling algorithm performs better overall on a wide range of experiments over the existing algorithms for both piconets (Das et al. in INFOCOM, pp. 591–600, 2001; Lapeyrie and Turletti in INFOCOM conference proceedings, San Francisco, US, 2003; Shreedhar and Varghese in SIGCOMM, pp. 231–242, 1995) and scatternets (Har-Shai et al. in OPNETWORK, 2002; Saha and Matsumot in AICT/ICIW, 2006; Tan and Guttag in The 27th annual IEEE conference on local computer networks(LCN). Tampa, 2002). Our studies also confirm that our proposed scheme achieves a high throughput and low packet delays with reasonable fairness among all the connections.
Resumo:
A Batch Processing Machine (BPM) is one which processes a number of jobs simultaneously as a batch with common beginning and ending times. Also, a BPM, once started cannot be interrupted in between (Pre-emption not allowed). This research is motivated by a BPM in steel casting industry. There are three main stages in any steel casting industry viz., pre-casting stage, casting stage and post-casting stage. A quick overview of the entire process, is shown in Figure 1. There are two BPMs : (1) Melting furnace in the pre-casting stage and (2) Heat Treatment Furnace (HTF) in the post casting stage of steel casting manufacturing process. This study focuses on scheduling the latter, namely HTF. Heat-treatment operation is one of the most important stages of steel casting industries. It determines the final properties that enable components to perform under demanding service conditions such as large mechanical load, high temperature and anti-corrosive processing. In general, different types of castings have to undergo more than one type of heat-treatment operations, where the total heat-treatment processing times change. To have a better control, castings are primarily classified into a number of job-families based on the alloy type such as low-alloy castings and high alloy castings. For technical reasons such as type of alloy, temperature level and the expected combination of heat-treatment operations, the castings from different families can not be processed together in the same batch.
Resumo:
Bluetooth is an emerging standard in short range, low cost and low power wireless networks. MAC is a generic polling based protocol, where a central Bluetooth unit (master) determines channel access to all other nodes (slaves) in the network (piconet). An important problem in Bluetooth is the design of efficient scheduling protocols. This paper proposes a polling policy that aims to achieve increased system throughput and reduced packet delays while providing reasonably good fairness among all traffic flows in a Bluetooth Piconet. We present an extensive set of simulation results and performance comparisons with two important existing algorithms. Our results indicate that our proposed scheduling algorithm outperforms the Round Robin scheduling algorithm by more than 40% in all cases tried. Our study also confirms that our proposed policy achieves higher throughput and lower packet delays with reasonable fairness among all the connections.
Resumo:
Two decision versions of a combinatorial power minimization problem for scheduling in a time-slotted Gaussian multiple-access channel (GMAC) are studied in this paper. If the number of slots per second is a variable, the problem is shown to be NP-complete. If the number of time-slots per second is fixed, an algorithm that terminates in O (Length (I)N+1) steps is provided.
Resumo:
In this paper, we are concerned with algorithms for scheduling the sensing activity of sensor nodes that are deployed to sense/measure point-targets in wireless sensor networks using information coverage. Defining a set of sensors which collectively can sense a target accurately as an information cover, we propose an algorithm to obtain Disjoint Set of Information Covers (DSIC), which achieves longer network life compared to the set of covers obtained using an Exhaustive-Greedy-Equalized Heuristic (EGEH) algorithm proposed recently in the literature. We also present a detailed complexity comparison between the DSIC and EGEH algorithms.
Resumo:
We consider the problem of quickest detection of an intrusion using a sensor network, keeping only a minimal number of sensors active. By using a minimal number of sensor devices, we ensure that the energy expenditure for sensing, computation and communication is minimized (and the lifetime of the network is maximized). We model the intrusion detection (or change detection) problem as a Markov decision process (MDP). Based on the theory of MDP, we develop the following closed loop sleep/wake scheduling algorithms: (1) optimal control of Mk+1, the number of sensors in the wake state in time slot k + 1, (2) optimal control of qk+1, the probability of a sensor in the wake state in time slot k + 1, and an open loop sleep/wake scheduling algorithm which (3) computes q, the optimal probability of a sensor in the wake state (which does not vary with time), based on the sensor observations obtained until time slot k. Our results show that an optimum closed loop control on Mk+1 significantly decreases the cost compared to keeping any number of sensors active all the time. Also, among the three algorithms described, we observe that the total cost is minimum for the optimum control on Mk+1 and is maximum for the optimum open loop control on q.
Resumo:
The problem of scheduling divisible loads in distributed computing systems, in presence of processor release time is considered. The objective is to find the optimal sequence of load distribution and the optimal load fractions assigned to each processor in the system such that the processing time of the entire processing load is a minimum. This is a difficult combinatorial optimization problem and hence genetic algorithms approach is presented for its solution.
Resumo:
In this paper we propose a general Linear Programming (LP) based formulation and solution methodology for obtaining optimal solution to the load distribution problem in divisible load scheduling. We exploit the power of the versatile LP formulation to propose algorithms that yield exact solutions to several very general load distribution problems for which either no solutions or only heuristic solutions were available. We consider both star (single-level tree) networks and linear daisy chain networks, having processors equipped with front-ends, that form the generic models for several important network topologies. We consider arbitrary processing node availability or release times and general models for communication delays and computation time that account for constant overheads such as start up times in communication and computation. The optimality of the LP based algorithms is proved rigorously.
Resumo:
The present work concerns with the static scheduling of jobs to parallel identical batch processors with incompatible job families for minimizing the total weighted tardiness. This scheduling problem is applicable in burn-in operations and wafer fabrication in semiconductor manufacturing. We decompose the problem into two stages: batch formation and batch scheduling, as in the literature. The Ant Colony Optimization (ACO) based algorithm called ATC-BACO algorithm is developed in which ACO is used to solve the batch scheduling problems. Our computational experimentation shows that the proposed ATC-BACO algorithm performs better than the available best traditional dispatching rule called ATC-BATC rule.
Resumo:
Utilization bounds for Earliest Deadline First(EDF) and Rate Monotonic(RM) scheduling are known and well understood for uniprocessor systems. In this paper, we derive limits on similar bounds for the multiprocessor case, when the individual processors need not be identical. Tasks are partitioned among the processors and RM scheduling is assumed to be the policy used in individual processors. A minimum limit on the bounds for a 'greedy' class of algorithms is given and proved, since the actual value of the bound depends on the algorithm that allocates the tasks. We also derive the utilization bound of an algorithm which allocates tasks in decreasing order of utilization factors. Knowledge of such bounds allows us to carry out very fast schedulability tests although we are constrained by the fact that the tests are sufficient but not necessary to ensure schedulability.
Resumo:
Tank irrigation systems in the semiarid regions of India are discussed in this paper. To optimize the grain yield of rice, it is essential to start the agricultural operations in the second week of July so that favorable climatic conditions will prevail during flowering and yield formation stages. Because of low inflow during the initial few weeks of the crop season, often farmers are forced to delay planting until sufficient sowing rain and inflow have occurred or to adopt deficit irrigation during this period. The delayed start affects the grain yield, but will lead to an improved irrigation efficiency. A delayed start of agricultural operations with increased irrigation efficiency leads to the energy resources becoming critical during the peak requirement week, particularly those of female labor and animal power. This necessitates augmenting these resources during weeks of their peak use, either by reorganizing the traditional methods of cultivation or by importing from outside the system.
Resumo:
We study wireless multihop energy harvesting sensor networks employed for random field estimation. The sensors sense the random field and generate data that is to be sent to a fusion node for estimation. Each sensor has an energy harvesting source and can operate in two modes: Wake and Sleep. We consider the problem of obtaining jointly optimal power control, routing and scheduling policies that ensure a fair utilization of network resources. This problem has a high computational complexity. Therefore, we develop a computationally efficient suboptimal approach to obtain good solutions to this problem. We study the optimal solution and performance of the suboptimal approach through some numerical examples.
Resumo:
This paper presents a genetic algorithm (GA) model for obtaining an optimal operating policy and optimal crop water allocations from an irrigation reservoir. The objective is to maximize the sum of the relative yields from all crops in the irrigated area. The model takes into account reservoir inflow, rainfall on the irrigated area, intraseasonal competition for water among multiple crops, the soil moisture dynamics in each cropped area, the heterogeneous nature of soils. and crop response to the level of irrigation applied. The model is applied to the Malaprabha single-purpose irrigation reservoir in Karnataka State, India. The optimal operating policy obtained using the GA is similar to that obtained by linear programming. This model can be used for optimal utilization of the available water resources of any reservoir system to obtain maximum benefits.
Resumo:
The objective of the present paper is to select the best compromise irrigation planning strategy for the case study of Jayakwadi irrigation project, Maharashtra, India. Four-phase methodology is employed. In phase 1, separate linear programming (LP) models are formulated for the three objectives, namely. net economic benefits, agricultural production and labour employment. In phase 2, nondominated (compromise) irrigation planning strategies are generated using the constraint method of multiobjective optimisation. In phase 3, Kohonen neural networks (KNN) based classification algorithm is employed to sort nondominated irrigation planning strategies into smaller groups. In phase 4, multicriterion analysis (MCA) technique, namely, Compromise Programming is applied to rank strategies obtained from phase 3. It is concluded that the above integrated methodology is effective for modeling multiobjective irrigation planning problems and the present approach can be extended to situations where number of irrigation planning strategies are even large in number. (c) 2004 Elsevier Ltd. All rights reserved.