2 resultados para Irrigation scheduling

em CaltechTHESIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the critical problems currently being faced by agriculture industry in developing nations is the alarming rate of groundwater depletion. Irrigation accounts for over 70% of the total groundwater withdrawn everyday. Compounding this issue is the use of polluting diesel generators to pump groundwater for irrigation. This has made irrigation not only the biggest consumer of groundwater but also one of the major contributors to green house gases. The aim of this thesis is to present a solution to the energy-water nexus. To make agriculture less dependent on fossil fuels, the use of a solar-powered Stirling engine as the power generator for on-farm energy needs is discussed. The Stirling cycle is revisited and practical and ideal Stirling cycles are compared. Based on agricultural needs and financial constraints faced by farmers in developing countries, the use of a Fresnel lens as a solar-concentrator and a Beta-type Stirling engine unit is suggested for sustainable power generation on the farms. To reduce the groundwater consumption and to make irrigation more sustainable, the conceptual idea of using a Stirling engine in drip irrigation is presented. To tackle the shortage of over 37 million tonnes of cold-storage in India, the idea of cost-effective solar-powered on-farm cold storage unit is discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Real-time demand response is essential for handling the uncertainties of renewable generation. Traditionally, demand response has been focused on large industrial and commercial loads, however it is expected that a large number of small residential loads such as air conditioners, dish washers, and electric vehicles will also participate in the coming years. The electricity consumption of these smaller loads, which we call deferrable loads, can be shifted over time, and thus be used (in aggregate) to compensate for the random fluctuations in renewable generation.

In this thesis, we propose a real-time distributed deferrable load control algorithm to reduce the variance of aggregate load (load minus renewable generation) by shifting the power consumption of deferrable loads to periods with high renewable generation. The algorithm is model predictive in nature, i.e., at every time step, the algorithm minimizes the expected variance to go with updated predictions. We prove that suboptimality of this model predictive algorithm vanishes as time horizon expands in the average case analysis. Further, we prove strong concentration results on the distribution of the load variance obtained by model predictive deferrable load control. These concentration results highlight that the typical performance of model predictive deferrable load control is tightly concentrated around the average-case performance. Finally, we evaluate the algorithm via trace-based simulations.