409 resultados para Free vibration


Relevância:

70.00% 70.00%

Publicador:

Resumo:

A new finite element is developed for free vibration analysis of high speed rotating beams using basis functions which use a linear combination of the solution of the governing static differential equation of a stiff-string and a cubic polynomial. These new shape functions depend on rotation speed and element position along the beam and account for the centrifugal stiffening effect. The natural frequencies predicted by the proposed element are compared with an element with stiff-string, cubic polynomial and quintic polynomial shape functions. It is found that the new element exhibits superior convergence compared to the other basis functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents a unified exact analysis for the statics and dynamics of a class of thick laminates. A three-dimensional, linear, small deformation theory of elasticity solution is developed for the bending, vibration and buckling of simply supported thick orthotropic rectangular plates and laminates. All the nine elastic constants of orthotropy are taken into account. The solution is formally exact and leads to simple infinite series for stresses and displacements in flexure, forced vibration and "beam-column" type problems and to closed form characteristic equations for free vibration and buckling problems. For free vibration of plates, the present analysis yields a triply infinite spectrum of frequencies instead of only one doubly infinite spectrum by thin plate theory or three doubly infinite spectra by Reissner-Mindlin type analyses. Some numerical results are presented for plates and laminates. Comparison of results from thin plate, Reissner and Mindlin analyses with these yield some important conclusions regarding the validity and effects of the assumptions made in the approximate theories.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

A three-dimensional linear, small deformation theory of elasticity solution by the direct method is developed for the free vibration of simply-supported, homogeneous, isotropic, thick rectangular plates. The solution is exact and involves determining a triply infinite sequence of eigenvalues from a doubly infinite set of closed form transcendental equations. As no restrictions are placed on the thickness variation of stresses or displacements, this formulation yields a triply infinite spectrum of frequencies, instead of only one doubly infinite spectrum by thin plate theory and three doubly infinite spectra by Mindlin's thick plate theory. Further, the present analysis yields symmetric thickness modes which neither of the approximate theories can identify. Some numerical results from the two approximate theories are compared with those from the present solution and some important conclusions regarding the effect of the assumptions made in the approximate theories are drawn. The thickness variations of stresses and displacements are also discussed. The analysis is readily extended for laminated plates of isotropic materials. Numerical results are also given for three-ply laminates, and are used to assess the accuracy of thin plate theory predictions for laminates. Extension to general lateral surface conditions and forced vibrations is indicated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

An exact solution for the free vibration problem of non-linear cubic spring mass system with Coulomb damping is obtained during each half cycle, in terms of elliptic functions. An expression for the half cycle duration as a function of the mean amplitude during the half cycle is derived in terms of complete elliptic integrals of the first kind. An approximate solution based on a direct linearization method is developed alongside this method, and excellent agreement is obtained between the results gained by this method and the exact results. © 1970 Academic Press Inc. (London) Limited.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper we incorporate a novel approach to synthesize a class of closed-loop feedback control, based on the variational structure assignment. Properties of a viscoelastic system are used to design an active feedback controller for an undamped structural system with distributed sensor, actuator and controller. Wave dispersion properties of onedimensional beam system have been studied. Efficiency of the chosen viscoelastic model in enhancing damping and stability properties of one-dimensional viscoelastic bar have been analyzed. The variational structure is projected on a solution space of a closed-loop system involving a weakly damped structure with distributed sensor and actuator with controller. These assign the phenomenology based internal strain rate damping parameter of a viscoelastic system to the usual elastic structure but with active control. In the formulation a model of cantilever beam with non-collocated actuator and sensor has been considered. The formulation leads to the matrix identification problem of two dynamic stiffness matrices. The method has been simplified to obtain control system gains for the free vibration control of a cantilever beam system with collocated actuator-sensor, using quadratic optimal control and pole-placement methods.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The β-phase of polyvinylidene fluoride (PVDF) is well known for its piezoelectric properties. PVDF films have been developed using solvent cast method. The films thus produced are in α-phase. The α-phase is transformed to piezoelectric β-phase when the film is hot-stretched with various different stretching factors at various different temperatures. The films are then characterized in terms of their mechanical properties and surface morphological changes during the transformation from α- to β-phases by using X-ray diffraction, differential scanning calorimeter, Raman spectra, Infrared spectra, tensile testing, and scanning electron microscopy. The films showed increased crystallinity with stretching at temperature up to 80°C. The optimum conditions to achieve β-phase have been discussed in detail. The fabricated PVDF sensors have been tested for free vibration and impact on plate structure, and its response is compared with conventional piezoelectric wafer type sensor. The resonant and antiresonant peaks in the frequency response of PVDF sensor match well with that of lead zirconate titanate wafer sensors. Effective piezoelectric properties and the variations in the frequency response spectra due to free vibration and impact loading conditions are reported. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In this paper, the free vibration of a non-uniform free-free Euler-Bernoulli beam is studied using an inverse problem approach. It is found that the fourth-order governing differential equation for such beams possess a fundamental closed-form solution for certain polynomial variations of the mass and stiffness. An infinite number of non-uniform free-free beams exist, with different mass and stiffness variations, but sharing the same fundamental frequency. A detailed study is conducted for linear, quadratic and cubic variations of mass, and on how to pre-select the internal nodes such that the closed-form solutions exist for the three cases. A special case is also considered where, at the internal nodes, external elastic constraints are present. The derived results are provided as benchmark solutions for the validation of non-uniform free-free beam numerical codes. (C) 2013 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A beam-column resting on continuous Winkler foundation and discrete elastic supports is considered. The beam-column is of variable cross-section and the variation of sectional properties along the axis of the beam-column is deterministic. Young's modulus, mass per unit length and distributed axial loadings of the beam-column have a stochastic distribution. The foundation stiffness coefficient of the Winkler model, the stiffnesses of discrete elastic supports, stiffnesses of end springs and the end thrust, are all considered as random parameters. The material property fluctuations and distributed axial loadings are considered to constitute independent, one-dimension uni-variate homogeneous real stochastic fields in space. The foundation stiffness coefficient, stiffnesses of the discrete elastic supports, stiffnesses of end springs and the end thrust are considered to constitute independent random variables. Static response, free vibration and stability behaviour of the beam-column are studied. Hamilton's principle is used to formulate the problem using stochastic FEM. Sensitivity vectors of the response and stability parameters are evaluated. Using these statistics of free vibration frequencies, mode shapes, buckling parameters, etc., are evaluated. A numerical example is given.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, an attempt is made to obtain the free vibration response of hybrid, laminated rectangular and skew plates. The Galerkin technique is employed to obtain an approximate solution of the governing differential equations. It is found that this technique is well suited for the study of such problems. Results are presented in a graphical form for plates with one pair of opposite edges simply supported and the other two edges clamped. The method is quite general and can be applied to any other boundary conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss-Lobatto-Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss-Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf-sup test oil a standard rectangular rigid tank partially filled with liquid The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements. and the obtained results are compared with available results in the published literature (C) 2009 Elsevier Inc All rights reserved

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bending analysis of closed cylindrical shells subjected to asymmetric load and having different support conditions is of interest in the design of chimneys, water towers, oil storage tanks, etc. A simple method of analyzing a long cantilever cylindrical shell, subjected to asymmetric load, is presented in the paper, using Schorer’s shell theory and orthogonal functions. The application of the solution has been illustrated with an example of a cantilever shell subjected to wind loads. The results obtained for this problem have been compared with the previously available results to illustrate the accuracy of the results obtained here. The solution presented can also be extended to a cylindrical shell with other support conditions, as well as to the study of free vibration of a cylindrical shell. The present solution will be very useful for designers who need to obtain numerical results for specific problems with minimum computational effort.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new super convergent sandwich beam finite element formulation is presented in this article. This element is a two-nodded, six degrees of freedom (dof) per node (3 dof u(0), w, phi for top and bottom face sheets each), which assumes that all the axial and flexural loads are taken by face sheets, while the core takes only the shear loads. The beam element is formulated based on first-order shear deformation theory for the face sheets and the core displacements are assumed to vary linearly across the thickness. A number of numerical experiments involving static, free vibration, and wave propagation analysis examples are solved with an aim to show the super convergent property of the formulated element. The examples presented in this article consider both metallic and composite face sheets. The formulated element is verified in most cases with the results available in the published literature.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Static and vibration problems of an indeterminate continuum are traditionally analyzed by the stiffness method. The force method is more or less non-existent for such problems. This situation is primarily due to the incomplete state of development of the compatibility conditions which are essential for the analysis of indeterminate structures by the flexibility method. The understanding of the Compatibility Conditions (CC) has been substantially augmented. Based on the understanding of CC, a novel formulation termed the Integrated Force Method (IFM) has been established. In this paper IFM has been extended for the static and vibration analyses of a continuum. The IFM analysis is illustrated taking three examples: 1. (1) rectangular plate in flexure 2. (2) analysis of a cantilevered dam 3. (3) free vibration analysis of a beam. From the examples solved it is observed that the force response of an indeterminate continuum with mixed boundary conditions can be generated by IFM without any reference to displacements in the field or on the boundary. Displacements if required can be calculated by back substitution.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A new finite element method is developed to analyse non-conservative structures with more than one parameter behaving in a stochastic manner. As a generalization, this paper treats the subsequent non-self-adjoint random eigenvalue problem that arises when the material property values of the non-conservative structural system have stochastic fluctuations resulting from manufacturing and measurement errors. The free vibration problems of stochastic Beck's column and stochastic Leipholz column whose Young's modulus and mass density are distributed stochastically are considered. The stochastic finite element method that is developed, is implemented to arrive at a random non-self-adjoint algebraic eigenvalue problem. The stochastic characteristics of eigensolutions are derived in terms of the stochastic material property variations. Numerical examples are given. It is demonstrated that, through this formulation, the finite element discretization need not be dependent on the characteristics of stochastic processes of the fluctuations in material property value.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper, the linear dynamics and active control of a string travelling with uniform velocity is presented. Discrete elastic supports are introduced along the length of the string. Finite element formulation is adopted to obtain the governing equations of motion. The velocity of translation introduces gyroscopic terms in the system equations. The effect of translation and the discrete elastic supports on the free vibration solution is studied. The solution is utilized in actively controlling the string vibrations due to an initial disturbance. The control, affected in modal space, is optimal with respect to a quadratic performance index. Numerical results are presented to demonstrate the effectiveness of the control strategy in regulating the travelling string vibrations.