76 resultados para Eustathius, Archbishop of Thessalonica, d. ca. 1194.
Resumo:
Optical quality single crystals of sodium D-isoascorbate monohydrate were grown by a slow cooling technique. The crystal possesses a bulky prismatic morphology. Thermal analyses indicate that the crystals are stable up to 125 degrees C. The optical transmission window ranges from 307 nm to 1450 nm. The principal refractive indices have been measured employing Brewster's angle method. The crystallographic and the principal dielectric axes coincide with each other such that a lies along Z, b along X and c along Y. The optic axis is oriented 58 degrees (at 532 nm) to the crystallographic a axis in the XZ plane and the crystal is negative biaxial. Type 1 and type 2 phase matching curves are generated and experimentally verified. No polarization dependence of the light absorption was observed confirming the validity of Kleinman's symmetry conjecture, leading to a single nonvanishing nonlinear tensor component. According to Hobden's classification the crystal belongs to class 3. The crystal also exhibits second order noncollinear conic sections. The single shot and multiple shot surface laser damage thresholds are determined to be 32.7 GW cm(-2) and 6.5 GW cm(-2) respectively for 1064 nm radiation.
Resumo:
We address the problem of two-dimensional (2-D) phase retrieval from magnitude of the Fourier spectrum. We consider 2-D signals that are characterized by first-order difference equations, which have a parametric representation in the Fourier domain. We show that, under appropriate stability conditions, such signals can be reconstructed uniquely from the Fourier transform magnitude. We formulate the phase retrieval problem as one of computing the parameters that uniquely determine the signal. We show that the problem can be solved by employing the annihilating filter method, particularly for the case when the parameters are distinct. For the more general case of the repeating parameters, the annihilating filter method is not applicable. We circumvent the problem by employing the algebraically coupled matrix pencil (ACMP) method. In the noiseless measurement setup, exact phase retrieval is possible. We also establish a link between the proposed analysis and 2-D cepstrum. In the noisy case, we derive Cramer-Rao lower bounds (CRLBs) on the estimates of the parameters and present Monte Carlo performance analysis as a function of the noise level. Comparisons with state-of-the-art techniques in terms of signal reconstruction accuracy show that the proposed technique outperforms the Fienup and relaxed averaged alternating reflections (RAAR) algorithms in the presence of noise.
Resumo:
Rates of hydrogen/deuterium (H/D) exchange determined by H-1 NMR spectroscopy are utilized to derive the strength of hydrogen bonds and to monitor the electronic effects in the site-specific halogen substituted benzamides and anilines. The theoretical fitting of the time dependent variation of the integral areas of H-1 NMR resonances to the first order decay function permitted the determination of HID exchange rate constants (k) and their precise half-lives (t(1/2)) with high degree of reproducibility. The comparative study also permitted the unambiguous determination of relative strength of hydrogen bonds and the contribution from electronic effects on the HID exchange rate. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Three-dimensional (3-D) full-wave electromagnetic simulation using method of moments (MoM) under the framework of fast solver algorithms like fast multipole method (FMM) is often bottlenecked by the speed of convergence of the Krylov-subspace-based iterative process. This is primarily because the electric field integral equation (EFIE) matrix, even with cutting-edge preconditioning techniques, often exhibits bad spectral properties arising from frequency or geometry-based ill-conditioning, which render iterative solvers slow to converge or stagnate occasionally. In this communication, a novel technique to expedite the convergence of MoMmatrix solution at a specific frequency is proposed, by extracting and applying Eigen-vectors from a previously solved neighboring frequency in an augmented generalized minimum residual (AGMRES) iterative framework. This technique can be applied in unison with any preconditioner. Numerical results demonstrate up to 40% speed-up in convergence using the proposed Eigen-AGMRES method.
Resumo:
Objectives:To determine if there is a biological mechanism that explains the association between HIV disease progression and increased mortality with low circulating vitamin D levels; specifically, to determine if restoring vitamin D levels induced T-cell functional changes important for antiviral immunity.Design:This was a pilot, open-label, three-arm prospective phase 1 study.Methods:We recruited 28 patients with low plasma vitamin D (<50nmol/l 25-hydroxyvitamin D3), comprising 17 HIV+ patients (11 on HAART, six treatment-naive) and 11 healthy controls, who received a single dose of 200000IU oral cholecalciferol. Advanced T-cell flow cytometry methods measured CD4(+) T-cell function associated with viral control in blood samples at baseline and 1-month after vitamin D supplementation.Results:One month of vitamin D supplementation restored plasma levels to sufficiency (>75nmol/l) in 27 of 28 patients, with no safety issues. The most striking change was in HIV+ HAART+ patients, where increased frequencies of antigen-specific T cells expressing macrophage inflammatory protein (MIP)-1 - an important anti-HIV blocking chemokine - were observed, with a concomitant increase in plasma MIP-1, both of which correlated significantly with vitamin D levels. In addition, plasma cathelicidin - a vitamin D response gene with broad antimicrobial activity - was enhanced.Conclusion:Vitamin D supplementation modulates disease-relevant T-cell functions in HIV-infected patients, and may represent a useful adjunct to HAART therapy. Copyright (C) 2015 Wolters Kluwer Health, Inc. All rights reserved.
Resumo:
M r= 975.9, orthorhombic, Pnna, a = 20.262 (3), b= 15.717 (2), c= 15.038 (1)A, V= 4788.97 A 3, z = 4, D x = 1.35 Mg m -3, Cu Kct radiation, 2 = 1.5418 A, /t = 2.79 mm -1, F(000) -= 2072, T = 293 K, R = 0.08, 3335 observed reflections. The molecular structure and the crystal packing are similar to those observed in the nonactin complexes of sodium thiocyanate and potassium thiocyanate. The eight metal-O distances are nearly the same in the potassium complex whereas the four distances involving carbonyl O atoms are shorter than the remaining four involving the tetrahydrofuran-ring O atoms in the Na and the Ca complexes. This observation can be explained in terms of the small ionic radii of Na + and Ca 2+, and leads to a plausible structural rationale for the stronger affinity of nonactin for K + than for the other two metal ions.
Resumo:
Multiferroic nanoparticles (NPs) of pristine and Ca, Ba co-doped BiFeO3 were synthesized by a facile sal gel route. Co-doping was done by fixing the total dopant concentration at 5 mol% and then the relative concentrations of Ca and Ba was varied. Structural, optical and magnetic properties of the NPs were investigated using different techniques. UV-Vis absorption spectra of BiFeO3 NPs showed a substantial blue shift of similar to 100 nm (530 nm -> 430 nm) on Ca. Ba co-doping which corresponds to increase in band gap by 0.5 eV. Fe-57 Mossbauer spectroscopy confirmed that iron is present only in 3(+) valence state in all co-doped samples. The coercive field increased by 18 times for Bi0.95Ca0.01Ba0.04FeO3 samples, which is the maximum enhancement, observed amongst all the 5 mol% doped samples. At the equimolar (2.5 mol % each) concentration of co-dopants, the coercive field shows a significant enhancement of about 9 times (220 Oe -> 2014 Oe) with concomitant increase in saturation magnetization by 7 times. Thus, equimolar co-doping causes simultaneous enhancement of the twin aspects of magnetic properties thereby making them better suited for device applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Reactive oxygen species (ROS) mediated modulation of signal transduction pathways represent an important mechanism of cell injury and barrier dysfunction leading to the development of vascular disorders. Towards understanding the role of ROS in vascular dysfunction, we investigated the effect of diperoxovanadate (DPV), derived from mixing hydrogen peroxide and vanadate, on the activation of phospholipase D (PLD) in bovine pulmonary artery endothelial cells (BPAECs). Addition of DPV to BPAECs in the presence of .05% butanol resulted in an accumulation of [P-32] phosphatidylbutanol (PBt) in a dose- and time-dependent manner. DPV also caused an increase in tyrosine phosphorylation of several protein bands (Mr 20-200 kD), as determined by Western blot analysis with antiphosphotyrosine antibodies. The DPV-induced [P-32] PBt-accumulation was inhibited by putative tyrosine kinase inhibitors such as genistein, herbimycin, tyrphostin and by chelation of Ca2+ with either EGTA or BAPTA, however, pretreatment of BPAECs with the inhibitor PKC bisindolylmaleimide showed minimal inhibition. Also down-regulation of PKC alpha and epsilon, the major isotypes of PKC in BPAECs, by TPA (100 nM, 18 h) did not attenuate the DPV-induced PLD activation. The effects of putative tyrosine kinase and PKC inhibitors were specific as determined by comparing [P-32] PBt formation between DPV and TPA. In addition to tyrosine kinase inhibitors, antioxidants such as N-acetylcysteine and pyrrolidine dithiocarbamate also attenuated DPV-induced protein tyrosine phosphorylation and PLD stimulation. These results suggest that oxidation, prevented by reduction with thiol compounds, is involved in DPV-dependent protein tyrosine phosphorylation and PLD activation.
Resumo:
Using a multivalley effective mass theory, we obtain the binding energy of a D- ion in Si and Ge taking into account the spatial variation of the host dielectric function. We find that on comparison with experimental results the effect of spatial dispersion is important in the estimation of binding energy for the D- formed by As in Si and Ge. The effect is less significant for the case of D- formed by P and Sb donors.
Resumo:
The 1122 (n=2) member of the Tl(Ca,Ba)n+1CunO2n+3 series containing a single Tl-O layer is shown to be associated with a Tc of 90 K. This value of Tc is significantly lower than that of the 2122 phase (Tcnot, vert, similar110 K) with two Tl-O layers.
Resumo:
A detailed investigation of the d.c. polarographic behaviour of vanadium(V),-(IV) and -(III) in glycine solutions has been made keeping the total glycine concentration at 0.1, 0.5 and 1.0 M and varying the pH of the solution. Experiments keeping the pH constant (using different ratios of glycine and glycine anion) and varying the glycine anion concentration, and also in predominantly anion solutions, have been made.
Resumo:
An acyclic edge coloring of a graph is a proper edge coloring such that there are no bichromatic cycles. The acyclic chromatic index of a graph is the minimum number k such that there is an acyclic edge coloring using k colors and is denoted by a'(G). It was conjectured by Alon, Suclakov and Zaks (and earlier by Fiamcik) that a'(G) <= Delta+2, where Delta = Delta(G) denotes the maximum degree of the graph. Alon et al. also raised the question whether the complete graphs of even order are the only regular graphs which require Delta+2 colors to be acyclically edge colored. In this article, using a simple counting argument we observe not only that this is not true, but in fact all d-regular graphs with 2n vertices and d>n, requires at least d+2 colors. We also show that a'(K-n,K-n) >= n+2, when n is odd using a more non-trivial argument. (Here K-n,K-n denotes the complete bipartite graph with n vertices on each side.) This lower bound for Kn,n can be shown to be tight for some families of complete bipartite graphs and for small values of n. We also infer that for every d, n such that d >= 5, n >= 2d+3 and dn even, there exist d-regular graphs which require at least d+2-colors to be acyclically edge colored. (C) 2009 Wiley Periodicals, Inc. J Graph Theory 63: 226-230, 2010.
Resumo:
Titration calorimetry measurements of the binding of phenyl-alpha (alpha PhOGlu), 3-methoxy (3MeOGlu), fluorodeoxy and deoxy derivatives of alpha-D-glucopyranose (Glu) to concanavalin A (conA), pea lectin and lentil lectin were performed at approx. 10 and 25 degrees C in 0.01 M dimethylglutaric acid/NaOH buffer, pH 6.9, containing 0.15 M NaCl and Mn2+ and Ca2+ ions. Apparently the 3-deoxy, 4-deoxy and 6-deoxy as well as the 4-fluorodeoxy and 6-fluorodeoxy derivatives of Glu do not bind to the lectins because no heat release was observed on the addition of aliquots of solutions of these derivatives to the lectin solutions. The binding enthalpies, delta H0b, and entropies, delta S0b, determined from the measurements were compared with the same thermodynamic binding parameters for Glu, D-mannopyranoside and methyl-alpha- D-glucopyranoside (alpha MeOGlu). The binding reactions are enthalpically driven with little change in the heat capacity on binding, and exhibit enthalpy-entropy compensation. Differences between the thermodynamic binding parameters can be rationalized in terms of the interactions apparent in the known crystal structures of the methyl-alpha-D-mannopyranoside-conA [Derewenda, Yariv, Helliwell, Kalb (Gilboa), Dodson, Papiz, Wan and Campbell (1989) EMBO J. 8, 2189-2193] and pea lectin-trimanno-pyranoside [Rini, Hardman, Einspahr, Suddath and Carber (1993) J. Biol. Chem. 268, 10126-10132] complexes. Increases in the entropy change on binding are observed for alpha MeOGlu binding to pea and lentil lectin, for alpha PhOGlu binding to conA and pea lectin, and for 3MeOGlu binding to pea lectin relative to the entropy change for Glu binding, and imply that the phenoxy and methoxy substituents provide additional hydrophobic interactions in the complex. Increases in the binding enthalpy relative to that of Glu are observed for deoxy and fluoro derivatives in the C-1 and C-2 positions and imply that these substituents weaken the interaction with the surrounding water, thereby strengthening the interaction with the binding site.
Resumo:
The crystal structure of a hexamer duplex d(CACGTG)(2) has been determined and refined to an R-factor of 18.3% using X-ray data up to 1.2 angstrom resolution. The sequence crystallizes as a left-handed Z-form double helix with Watson-Crick base pairing. There is one hexamer duplex, a spermine molecule, 71 water molecules, and an unexpected diamine (Z-5, 1,3-propanediamine, C3H10N2)) in the asymmetric unit. This is the high-resolution non-disordered structure of a Z-DNA hexamer containing two AT base pairs in the interior of a duplex with no modifications such as bromination or methylation on cytosine bases. This structure does not possess multivalent cations such as cobalt hexaammine that are known to stabilize Z-DNA. The overall duplex structure and its crystal interactions are similar to those of the pure-spermine form of the d(CGCGCG)(2) structure. The spine of hydration in the minor groove is intact except in the vicinity of the T5A8 base pair. The binding of the Z-5 molecule in the minor grove of the d(CACGTG)(2) duplex appears to have a profound effect in conferring stability to a Z-DNA conformation via electrostatic complementarity and hydrogen bonding interactions. The successive base stacking geometry in d(CACGTG)(2) is similar to the corresponding steps in d(CG)(3). These results suggest that specific polyamines such as Z-5 could serve as powerful inducers of Z-type conformation in unmodified DNA sequences with AT base pairs. This structure provides a molecular basis for stabilizing AT base pairs incorporated into an alternating d(CG) sequence.