206 resultados para Electronics in navigation.
Resumo:
This brief discusses the convergence analysis of proportional navigation (PN) guidance law in the presence of delayed line-of-sight (LOS) rate information. The delay in the LOS rate is introduced by the missile guidance system that uses a low cost sensor to obtain LOS rate information by image processing techniques. A Lyapunov-like function is used to analyze the convergence of the delay differential equation (DDE) governing the evolution of the LOS rate. The time-to-go until which decreasing behaviour of the Lyapunov-like function can be guaranteed is obtained. Conditions on the delay for finite time convergence of the LOS rate are presented for the linearized engagement equation. It is observed that in the presence of line-of-sight rate delay, increasing the effective navigation constant of the PN guidance law deteriorates its performance. Numerical simulations are presented to validate the results.
Resumo:
A pulsewidth modulation (PWM) technique is proposed for minimizing the rms torque ripple in inverter-fed induction motor drives subject to a given average switching frequency of the inverter. The proposed PWM technique is a combination of optimal continuous modulation and discontinuous modulation. The proposed technique is evaluated both theoretically as well as experimentally and is compared with well-known PWM techniques. It is shown that the proposed method reduces the rms torque ripple by about 30% at the rated speed of the motor drive, compared to conventional space vector PWM.
Resumo:
The phase-interconversions between the spinel-, brownmillerite-, defect rocksalt and perovskite-type structures have been investigated by way of (i) introducing deficiency in A-sites in CaxMn2-xO3 (0.05 <= x <= 1) i.e., by varying Ca/Mn ratio from 0.025 to 1 and (ii) nonstoichiometric CaMnO3-delta (CMO) with 0.02 <= delta <= 1. The temperature dependence of resistivity (rho-T) have been investigated on nonstoichiometric CaMnO3-delta (undoped) as well as the CMO substituted with donor impurities such as La3+, Y3+, Bi3+ or acceptor such as Na1+ ion at the Ca-site. The rho-T characteristics of nonstoichiometric CaMnO3-delta is strongly influenced by oxygen deficiency, which controls the concentration of Mn3+ ions and, in turn, affects the resistivity, rho. The results indicated that the substitution of aliovalent impurities at Ca-site in CaMnO3 has similar effects as of CaMnO3-delta ( undoped) annealed in atmospheres of varying partial pressures whereby electron or hole concentration can be altered, yet the doped samples can be processed in air or atmospheres of higher P-O2. The charge transport mechanisms of nonstoichiometric CaMnO3-delta as against the donor or acceptor doped CaMnO3 (sintered in air, P-O2 similar to 0.2 atm) have been predicted. The rho (T) curves of both donor doped CaMnO3 as well as non-stoichiometric CaMnO3-delta, is predictable by the small polaron hopping (SPH) model, which changes to the variable range hopping (VRH) at low temperatures whereas the acceptor doped CaMnO3 exhibited an activated semiconducting hopping ( ASH) throughout the measured range of temperature (10-500 K).
Resumo:
This paper describes a new analysis of the avalanche breakdown phenomenon in bipolar transistors for different bias conditions of the emitter-base junction. This analysis revolves around the transportation and storage of majority carriers in the base region. Using this analysis one can compute all the voltage-current characteristics of a transistor under avalanche breakdown.
Resumo:
The concurrency matrix aids the detection of bit steerability of microcommand sets in a microprogram. In the present work, the concept of don't-cares is introduced into the concurrency matrix to identify the bit steerable microcommand sets.
Resumo:
Approximate closed-form solutions of the non-linear relative equations of motion of an interceptor pursuing a target under the realistic true proportional navigation (RTPN) guidance law are derived using the Adomian decomposition method in this article. In the literature, no study has been reported on derivation of explicit time-series solutions in closed form of the nonlinear dynamic engagement equations under the RTPN guidance. The Adomian method provides an analytical approximation, requiring no linearization or direct integration of the non-linear terms. The complete derivation of the Adomian polynomials for the analysis of the dynamics of engagement under RTPN guidance is presented for deterministic ideal case, and non-ideal dynamics in the loop that comprises autopilot and actuator dynamics and target manoeuvre, as well as, for a stochastic case. Numerical results illustrate the applicability of the method.
Resumo:
A new method is suggested where the thermal activation energy is measured directly and not as a slope of an Arrhenius plot. The sample temperature T is allowed to fluctuate about a temperature T0. The reverse-biased sample diode is repeatedly pulsed towards zero bias and the transient capacitance C1 at time t1 is measured The activation energy is obtained by monitoring the fluctuations in C1 and T. The method has been used to measure the activation energy of the gold acceptor level in silicon.
Resumo:
The electron and hole mobilities of octathio[8]circulene (sulflower) crystal have been calculated using quantum chemical methods, with accurate determination of reorganization energies and the rate of charge transfer, the key parameters controlling the charge carriers conductance. We find this molecular crystal to be an excellent conductor with large mobilities for both the charge carriers. Moreover, the hole mobility is found to be slightly larger than the electron mobility. Such an ambipolar organic crystal with substantial carrier mobilities shows possibilities of sophisticated device fabrication in advanced electronics.
Resumo:
he performance of an induction motor fed by PWM inverters is mainly determined by the harmonic contents of the output voltage. This paper presents a method of numerically calculating the harmonics in the output voltage waveform. Equal pulse-width modulation and siunsoidal PWM are studied. Analysis has been done for single-phase and three-phase bridge inverters. A systematic procedure is given for computing the harmonics and the results are. tabulated.
Resumo:
Conducting and semiconducting polymers are important materials in the development of printed, flexible, large-area electronics such as flat-panel displays and photovoltaic cells. There has been rapid progress in developing conjugated polymers with high transport mobility required for high-performance field-effect transistors (FETs), beginning(1) with mobilities around 10(-4) cm(2) V-1 s(-1) to a recent report(2) of 1 cm(2) V-1 s(-1) for poly(2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b] thiophene) (PBTTT). Here, the electrical properties of PBTTT are studied at high charge densities both as the semiconductor layer in FETs and in electrochemically doped films to determine the transport mechanism. We show that data obtained using a wide range of parameters (temperature, gate-induced carrier density, source-drain voltage and doping level) scale onto the universal curve predicted for transport in the Luttinger liquid description of the one-dimensional `metal'.
Resumo:
Various intrusion detection systems (IDSs) reported in the literature have shown distinct preferences for detecting a certain class of attack with improved accuracy, while performing moderately on the other classes. In view of the enormous computing power available in the present-day processors, deploying multiple IDSs in the same network to obtain best-of-breed solutions has been attempted earlier. The paper presented here addresses the problem of optimizing the performance of IDSs using sensor fusion with multiple sensors. The trade-off between the detection rate and false alarms with multiple sensors is highlighted. It is illustrated that the performance of the detector is better when the fusion threshold is determined according to the Chebyshev inequality. In the proposed data-dependent decision ( DD) fusion method, the performance optimization of ndividual IDSs is first addressed. A neural network supervised learner has been designed to determine the weights of individual IDSs depending on their reliability in detecting a certain attack. The final stage of this DD fusion architecture is a sensor fusion unit which does the weighted aggregation in order to make an appropriate decision. This paper theoretically models the fusion of IDSs for the purpose of demonstrating the improvement in performance, supplemented with the empirical evaluation.
Resumo:
Schoeffler has derived continuously equivalent networks in the nodal-admittance domain. The letter derives a corresponding result in state space that combines the usefulness of Schoeffler's result and the power of the state-variable approach.
Resumo:
The sparking potentials and swarm coefficients ( ionization and attachment coefficients) were measured in Freon and Freon-air mixtures over the range of 24·3 times 10-16≤ E/ N ≤ 303 times 10-16 V cm2. Addition of Freon increased the sparking potential, and the rate of increase of the attachment coefficient with increasing percentage of Froon in the mixture was much larger than the rate of change of the first ionization coefficient.
Resumo:
The V-I characteristic of a p-n junction under breakdown is calculated taking the thermally generated carriers into account. The current density distributions computed under different conditions have been given. The light emission and other characteristics reported by Chiang and Lauritzen and others have been explained.
Resumo:
One of the critical issues in large scale commercial exploitation of MEMS technology is its system integration. In MEMS, a system design approach requires integration of varied and disparate subsystems with one of a kind interface. The physical scales as well as the magnitude of signals of various subsystems vary widely. Known and proven integration techniques often lead to considerable loss in advantages the tiny MEMS sensors have to offer. Therefore, it becomes imperative to think of the entire system at the outset, at least in terms of the concept design. Such design entails various aspects of the system ranging from selection of material, transduction mechanism, structural configuration, interface electronics, and packaging. One way of handling this problem is the system-in-package approach that uses optimized technology for each function using the concurrent hybrid engineering approach. The main strength of this design approach is the fast time to prototype development. In the present work, we pursue this approach for a MEMS load cell to complete the process of system integration for high capacity load sensing. The system includes; a micromachined sensing gauge, interface electronics and a packaging module representing a system-in-package ready for end characterization. The various subsystems are presented in a modular stacked form using hybrid technologies. The micromachined sensing subsystem works on principles of piezo-resistive sensing and is fabricated using CMOS compatible processes. The structural configuration of the sensing layer is designed to reduce the offset, temperature drift, and residual stress effects of the piezo-resistive sensor. ANSYS simulations are carried out to study the effect of substrate coupling on sensor structure and its sensitivity. The load cell system has built-in electronics for signal conditioning, processing, and communication, taking into consideration the issues associated with resolution of minimum detectable signal. The packaged system represents a compact and low cost solution for high capacity load sensing in the category of compressive type load sensor.