61 resultados para Desorption


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A thermodynamic analysis is presented for the two stage thermal compression process for an adsorption refrigeration cycle with HFC-134a as the working fluid and activated carbon as the adsorbent. Three specimens of varying achievable packing densities were evaluated. The influence of evaporating, condensing/adsorption and desorption temperatures was assessed through three performance indicators, namely,the uptake efficiency, the coefficient of performance and the exergetic efficiency. Conditions under which a two stage thermal compression process performs better than the single stage unit are identified. It is concluded that two stage thermal compression will be a viable proposition when the heat source temperature is low or when adsorption characteristics are weak or when adequate packing densities are difficult to realize. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The integration of hydrophobic and hydrophilic drugs in the polymer microcapsule offers the possibility of developing a new drug delivery system that combines the best features of these two distinct classes of material. Recently, we have reported the encapsulation of an uncharged water-insoluble drug in the polymer membrane. The hydrophobic drug is deposited using a layer-by-layer (LbL) technique, which is based on the sequential adsorption of oppositely charged polyelectrolytes onto a charged substrate. In this paper, we report the encapsulation of two different drugs, which are invariably different in structure and in their solubility in water. We have characterized these dual drug vehicular capsules by confocal laser scanning microscopy, atomic force microscopy, visible microscopy, and transmission electron microscopy. The growth of a thin film on a flat substrate by LbL was monitored by UV−vis spectra. The desorption kinetics of two drugs from the thin film was modeled by a second-order rate model.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

De novo mass spectrometric sequencing of two Conus peptides, Vi1359 and Vi1361, from the vermivorous cone snail Conus virgo, found off the southern Indian coast, is presented. The peptides, whose masses differ only by 2 Da, possess two disulfide bonds and an amidated C-terminus. Simple chemical modifications and enzymatic cleavage coupled with matrix assisted laser desorption ionization (MALDI) mass spectrometric analysis aided in establishing the sequences of Vi1359, ZCCITIPECCRI-NH2, and Vi1361, ZCCPTMPECCRI-NH2, Which differ only at residues 4 and 6 (Z = pyroglutamic acid). The presence of the pyroglutamyl residue at the N-terminus was unambiguously identified by chemical hydrolysis of the cyclic amide, followed by esterification. The presence of Ile residues in both the peptides was confirmed from high-energy collision induced dissociation (CID) studies, using the observation Of W-n- and d(n)-ions as a diagnostic. Differential cysteine labeling, in conjunction with MALDI-MS/MS, permitted establishment of disulfide connectivity in both peptides as Cys2-Cys9 and Cys3-Cys10. The cysteine pattern clearly reveals that the peptides belong to the class of T-superfamily conotoxins, in particular the T-1 superfamily.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The emergence of strains of Plasmodium falciparum resistant to the commonly used antimalarials warrants the development of new antimalarial agents. The discovery of type II fatty acid synthase (FAS) in Plasmodium distinct from the FAS in its human host (type I FAS) opened up new avenues for the development of novel antimalarials. The process of fatty acid synthesis takes place by iterative elongation of butyryl-acyl carrier protein (butyryl-ACP) by two carbon units, with the successive action of four enzymes constituting the elongation module of FAS until the desired acyl length is obtained. The study of the fatty acid synthesis machinery of the parasite inside the red blood cell culture has always been a challenging task. Here, we report the in vitro reconstitution of the elongation module of the FAS of malaria parasite involving all four enzymes, FabB/F (β-ketoacyl-ACP synthase), FabG (β-ketoacyl-ACP reductase), FabZ (β-ketoacyl-ACP dehydratase), and FabI (enoyl-ACP reductase), and its analysis by matrix-assisted laser desorption-time of flight mass spectrometry (MALDI-TOF MS). That this in vitro systems approach completely mimics the in vivo machinery is confirmed by the distribution of acyl products. Using known inhibitors of the enzymes of the elongation module, cerulenin, triclosan, NAS-21/91, and (–)-catechin gallate, we demonstrate that accumulation of intermediates resulting from the inhibition of any of the enzymes can be unambiguously followed by MALDI-TOF MS. Thus, this work not only offers a powerful tool for easier and faster throughput screening of inhibitors but also allows for the study of the biochemical properties of the FAS pathway of the malaria parasite.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: A number of proteome studies have been performed recently to identify pheromone-related protein expression and their molecular function using genetically modified rodents' urine. However, no such studies have used Indian commensal rodents; interestingly, in a previous investigation, we confirmed the presence of volatile molecules in commensal rodents urine and these molecules seem to be actively involved in pheromonal communication. Therefore, the present study aims to identify the major urinary protein [MUP] present in commensal rat urine, which will help us to understand the protein's expression pattern and intrinsic properties among the rodents globally. Experimental Design: Initially, the total urinary proteins were separated by 1-D and 2-D electrophoresis and then subsequently analyzed by Matrix Assisted Laser Desorption Ionization-Time of Flight and Mass Spectrometer (MALDI-TOF/MS). Furthermore, they were then fragmented with the aid of a Tandem Mass Spectrometer (TOF/TOF) and the identified sequences aligned and confirmed using similarity with the deduced primary structures of members of the lipocalin superfamily.Results: The SDS-PAGE protein profiles showed distinct proteins with molecular masses of 15, 22.4, 25, 28, 42, 50, 55, 68, and 91 kDa. Of these proteins, the 22.4 kDa protein was considered to be target candidate. When 2D electrophoresis was carried out, about similar to 50 spots were detected with different masses and various pI ranges. The 22.4 kDa protein was found to have a pI of about 4.9. This 22.4 kDa protein spot was digested and subjected to mass spectrometry; it was identified as rat MUP. The fragmented peptides from the rat MUP at 935, 1026, 1192, and 1303 m/z were further fragmented with the aid of MS/MS and generated de novo sequence and this confirmed this protein to be the MUP present in the urine of commensal rats.Conclusion: The present investigation confirms the presence of MUP with a molecular mass of 22.4 kDa in the urine of commensal rats. This protein may be involved in the binding of volatile molecules and opens up a discussion about how volatile and non-volatile molecules in the commensal rats' urine may contribute chemo-communication.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colloid of palladium nanoparticles has been prepared by the Solvated Metal Atom Dispersion (SMAD) method. Reaction of Pd(0) nanopowder obtained upon precipitation from the colloid, with ammonia borane (H3N center dot BH3, AB) in aqueous solutions at room temperature results in the generation of active hydrogen atoms. The active hydrogen atoms either combine with one another resulting in H-2 evolution or diffuse into the Pd lattice to afford PdHx. Diffusion of hydrogen atoms leads to an expansion of the Pd lattice. The diffused hydrogen atoms are distributed uniformly over the entire particle. These features were established using powder XRD and electron microscopy studies. The H-1 NMR spectral studies of PdHx before and after desorption of H-2 revealed that the hydrogen atoms trapped inside Pd lattice are hydridic in nature. Desorption of hydrogen from PdHx did not result in complete reversibility suggesting that some hydrogen atoms are strongly trapped inside the Pd lattice. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

On hydrogenation of the Laves phase SmFe2, an amorphous SmFe2H3.6 (a-SmFe2H3.6) alloy was formed between 400 K and 500 K. The amorphous nature of the alloy was confirmed by X-ray diffraction, transmission electron microscopy and thermal analysis. However, SmFe2 absorbed hydrogen in the crystal state below 350 K and decomposed into SmH2 and α-Fe above 550 K. The crystallization behaviour of a-SmFe2H3.6 was investigated by differential scanning calorimetry in combination with electron microscopy. Even after considerable hydrogen desorption (Image ) by an endothermic reaction on heating, the amorphous state was retained. Crystallization of a-SmFe2H3.6 took place in two stages. The first stage involved the precipitation of α-Fe in the amorphous matrix. The second stage involved the decomposition of the remaining amorphous phase into the equilibrium phases SmH2 and SmFe2.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Iron is a major pollutant released as a by-product during several industrial operations especially during acid mining of metal ores. In this paper, the use of Bengal gram husk (husk of channa dal, Cicer arientinum) in the biosorption of Fe(III) from aqueous solutions is discussed. Parameters like agitation time, adsorbent dosage and pH were studied at different Fe(Ill) concentrations. The adsorption data fit well with Langmuir and Freundlich isotherm models. The adsorption capacity (q(max)) calculated from the Langmuir isotherm was 72.16 mg of Fe(III)/g of the biosorbent at an initial pH of 2.5. Desorption Studies were performed at different concentrations of hydrochloric acid showing that quantitative recovery of the metal ion is possible. The infrared spectra of the biomass before and after treatment with Fe(III), revealed that hydroxyl, carboxyl and amide bonds are involved in the uptake of Fe(III) ions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The reaction of cadmium sulfate in the presence of polyazaheterocyclic organic molecules gave rise to a variety of new cadmium sulfate phases in water containing solvothermal reaction. The compounds have two- (I) and three-dimensionally (II-VI) extended structures. All the compounds have structures built up by the connectivity involving the cadmium octahedra and the sulfate tetrahedra in which the heterocyclic organic molecules act as the ligand. The linkages between the Cd2+ and (SO4)2- ions form one- (II), two- (I, III, and IV), and three- (V and VI) dimensionally extended cadmium sulfate phases. The connectivity between Cd2+ ion and the heterocyclic ligand also gives rise to one- and two-dimensional structures. The inter-connectivity between the two units gives rise to the observed structures. The presence of Cd-O-Cd chains and Cd-O-Cd layers in some of the structures is noteworthy. The adsorption/desorption studies suggest that the cadmium sulfate phases adsorb/desorb anionic dyes selectively in the presence of water/ethanol, respectively. The photocatalytic degradation studies on cationic dyes under UV-irradiation indicate modest activity. The cyanosilylation of imines using the present compounds as heterogeneous catalyst indicate good catalytic behavior. The various properties exhibited by the cadmium sulfate phases suggest that these compounds are versatile. All the compounds were characterized by powder X-ray diffraction, thermogravimetric analysis, infrared (IR) and UV-visible studies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The nature of the chemisorbed states of nitrogen on various transition metal surfaces is discussed comprehensively on the basis of the results of electron spectroscopic investigations augmented by those from other techniques such as LEED and thermal desorption. A brief discussion of the photoemission spectra of free N2, a comparison of adsorbed N2 and CO as well as of physisorption of N2 on metal surfaces is also presented. We discuss the chemisorption of N2 on the surfaces of certain metals (e.g. Ni, Fe, Ru and W) in some detail, paying considerable attention to the effect of electropositive and electronegative surface modifiers. Features of the various chemisorbed states (one or more weakly chemisorbed gamma-states, strongly chemisorbed alpha-states with bond orders between 1 and 2. and dissociative chemisorbed beta-states) on different surfaces are described and relations between them indicated. While the gamma-state could be a precursor of the alpha-state, the alpha-state could be the precursor of the beta-state and this kind of information is of direct relevance to ammonia synthesis. The nature of adsorption of N2 on the surfaces of some metals (e.g. Cr, Co) deserves further study and such investigations might as well suggest alternative catalysts for ammonia synthesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The potential to remove chromium(VI) from aqueous solutions through biosorption using coffee husk was investigated. The effects of pH, contact time, initial concentration and adsorbent dosage on the adsorption of Cr(VI) were studied. The data obeyed Langmuir and Freundlich adsorption isotherms. The Langmuir adsorption capacity was found to be 44.95 mg/g. The Freundlich constants K-f and n were 1.027 mg/g (litre/mg)(n)] and 1.493, respectively. Desorption studies indicated the removal of 60% of the hexavalent chromium. Infrared spectral studies revealed the presence of functional groups, such as hydroxyl and carboxyl groups, on the surface of the biomass, which facilitates biosorption of Cr(VI).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The interaction of CO with Cu, Pd, and Ni at different coverages of the metals on solid substrates has been investigated by He II and core-level spectroscopies, after the nature of variation of the metal core-level binding energies with the coverage or the cluster size is established. The separation between the (1 pi + 5 sigma) and 4 sigma levels of CO increases with a decrease in the size of the metal clusters, accompanied by an increase in the desorption temperature. In the case of Cu, the intramolecular shakeup satellite of CO disappears on small clusters. More importantly, CO dissociates on small Ni clusters, clearly confirming that metal-CO interaction strength increases with a decrease in the cluster size.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Interaction of carbon monoxide with a few chosen bimetallic overlayers has been investigated along with the core-level binding energies of the deposited metals by employing X-rays as well as UV photoelectron spectroscopies. Core-level binding energies of the deposited metals around monolayer coverages (0 similar to 1) are significantly different than those at high coverages or of the pure metals. Bimetallic overlayers such as Ni/Au and Cu/Pt showing large negative shifts in the surface core-level binding energy of the deposited metal interact strongly with carbon monoxide. In the case of Ni/Au (0(Ni) similar to 0.85), CO dissociates around 280 K. In contrast to this behavior, the interaction of CO with Pd/Mo or W, showing large positive shifts in the surface core-level binding energy, is very weak, and the CO desorption temperature is much lower than that from the clean Pd metal surface. The CO desorption temperature generally increases as the surface core-level shift of the deposited metal becomes more negative; the separation between the (5 sigma + 1 pi) and 4 sigma levels of CO also increases in this direction. These results suggest that the variation in the strength of interaction of CO with bimetallic overlayers is a chemical manifestation of the shift in the surface core-level binding energies of the deposited metals at monolayer coverages.