207 resultados para Carboxylic acids.
Resumo:
Fifty-one novel 1-(cyclopropyl/2,4-difluorophenyl/t-butyl)-1,4-dihydro-6-fluoro-7-(sub secondary amino)-4-oxoquinoline-3-carboxylic acids were synthesized and evaluated for their antimycobacterial in vitro and in vivo against Mycobacterium tuberculosis H37Rv (MTB), multi-drug resistant Mycobacterium tuberculosis (MDR-TB) and Mycobacterium smegmatis (MC 2) and also tested for the ability to inhibit the supercoiling activity of DNA gyrase from M. smegmatis. Among the synthesized compounds, 7-(3-(diethylcarbamoyl)piperidin-1-yl)-1-cyclopropyl-6-fluoro-1,4-dihydro-4-oxoquinoline-3-carboxylic acid (7I) was found to be the most active compound in vitro with MIC of 0.09 mu M against MTB and MDR-TB respectively. In the in vivo animal model 7I decreased the mycobacterial load in lung and spleen tissues with 2.53- and 4.88-log10 protections respectively at a dose of 50 mg/kg body weight. (C) 2007 Elsevier Masson SAS. All rights reserved.
Resumo:
A new class of 1,3,4-oxadiazoles were prepared from acid hydrazides on treatment with different carboxylic acids in the presence of phosphorus oxychloride. Interconversion of oxadiazoles to thiadiazoles and triazoles was carried out with appropriate reagents. The antimicrobial and cytotoxic activities of compounds 7a-d to 12a-d were tested. Compounds 10d and 12d showed pronounced antimicrobial activity. Further, compound 10d exhibited maximum cytotoxicity. (C) 2008 Elsevier Masson SAS. All rights reserved.
Resumo:
Isomeric half eater acid chlorides derived from 1,2-and 1-3-carboxylic acids give rise to the same oxonium salt with Lewis acids.
Resumo:
Diisopropoxytitanium(III) tetrahydroborate, ((PrO)-Pr-1)(2)TiBH4), generated in situ in dichloromethane from diisopropoxytitanium dichloride and benzyltriethylammonium borohydride in a 1:2 ratio selectively reduces aldehydes, ketones, acid chlorides, carboxylic acids, and N-Boc-protected amino acids to the corresponding alcohols in excellent yield under very mild reaction conditions (-78 to 25 degrees C).
Resumo:
A new methodology for the construction of tricyclo[5.2.2.0(1,5)]undecanes is described from indane-4-carboxylic acids. Birch reduction of indane-4-carboxylic acids followed by conjugation and cycloaddition with alpha-chloroacrylonitrile and hydrolysis lead to the tricyclic compounds 36 and 48 which are intermediates in the eremolactone synthesis.
Resumo:
Benzene carboxylic acids and Benzamide act as their self-complement in molecular recognition to form inter-molecular hydrogen bonded dimers between amide and carboxylic acid groups, which have been investigated by H-1, C-13 and N-15 NMR spectroscopy. Extensive NMR studies using diffusion ordered spectroscopy (DOSY), variable temperature 1D, 2D NMR, established the formation of heterodimers of benzamide with benzoic acid, salicylic acid and phenyl acetic acid in deuterated chloroform solution. Association constants for the complex formation in the solution state have been determined. The results are ascertained by X-ray diffraction in the solid state. Intermolecular interactions in solution and in solid state were found to be similar. The structural parameters obtained by X-ray diffraction studies are compared with those obtained by DFT calculations. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
In the present study, four new multicomponent forms of lamotrigine (LTG) with selected carboxylic acids, viz. acetic acid, propionic acid, sorbic acid, and glutaric acid, have been identified. Preliminary solid-state characterization was done by differential scanning calorimetry/thermogravimetric, infrared, and powder X-ray diffraction techniques. X-ray single-crystal structure analysis confirmed the proton transfer, stoichiometry, and the molecular composition, revealing all of these to be a new salt/salt-cocrystal/salt monosolvate monohydrate of LTG. All four compounds exhibited both the aminopyridine dimer of LTG (motif 4) and cation-anion dimers between protonated LTG and the carboxylate anion in their crystal structures. Further, these new crystal forms were subjected to solubility studies in water, powder dissolution studies in 0.1 N HCl, and stability studies under humid conditions in comparison with pure LTG base. The solubility of these compounds in water is significantly enhanced compared with that of pure base, which is attributed to the type of packing motifs present in their crystal structures as well as to the lowering of the pH by the acidic coformers. Solid residues of all forms remaining after solubility and dissolution experiments were also assessed for any transformation in water and acidic medium.
Resumo:
We demonstrate here that supramolecular interactions enhance the sensitivity towards detection of electron-deficient nitro-aromatic compounds (NACs) over discrete analogues. NACs are the most commonly used explosive ingredients and are common constituents of many unexploded landmines used during World WarII. In this study, we have synthesised a series of pyrene-based polycarboxylic acids along with their corresponding discrete esters. Due to the electron richness and the fluorescent behaviour of the pyrene moiety, all the compounds act as sensors for electron-deficient NACs through a fluorescence quenching mechanism. A Stern-Volmer quenching constant determination revealed that the carboxylic acids are more sensitive than the corresponding esters towards NACs in solution. The high sensitivity of the acids was attributed to supramolecular polymer formation through hydrogen bonding in the case of the acids, and the enhancement mechanism is based on an exciton energy migration upon excitation along the hydrogen-bond backbone. The presence of intermolecular hydrogen bonding in the acids in solution was established by solvent-dependent fluorescence studies and dynamic light scattering (DLS) experiments. In addition, the importance of intermolecular hydrogen bonds in solid-state sensing was further explored by scanning tunnelling microscopy (STM) experiments at the liquid-solid interface, in which structures of self-assembled monolayer of the acids and the corresponding esters were compared. The sensitivity tests revealed that these supramolecular sensors can even detect picric acid and trinitrotoluene in solution at levels as low as parts per trillion (ppt), which is much below the recommended permissible level of these constituents in drinking water.
Resumo:
Haloperidol, an antipsychotic drug, was screened for new solid crystalline phases using high throughput crystallization in pursuit of solubility improvement. Due to the highly basic nature of the API, all the solid forms with acids were obtained in the form of salts. Eleven crystalline salts in the form of oxalate (1:1), benzoate (1:1), salicylate (1:1 and 1:2), 4-hydroxybenzoate (1:1), 4-hydroxybenzoate ethyl acetate solvate (1:1:1), 3,4-dihydroxybenzoate (1:1), 3,5-dihydroxybenzoate (1:1), mesylate (1:1), besylate (1:1), and tosylate (1:1) salt were achieved. There is an insertion of carboxylate or sulfonate anion into the hydrogen bonding pattern of haloperidol. The salts with the aliphatic carboxylic acids were found to be more prone to form salt hydrates compared with aromatic carboxylate salts. All the salts were subjected to solubility measurement in water at neutral pH. There was no direct correlation observed between the solubility of the salt and its coformer. All the salts are stable at room temperature as well as after 24 h slurry experiment except the oxalate salt, which showed an unusual phase transformation from its hydrated form to the anhydrous form. A structureproperty relationship was examined to analyze the solubility behavior of the solid forms.
Resumo:
Two Chrastil type expressions have been developed to model the solubility of supercritical fluids/gases in liquids. The three parameter expressions proposed correlates the solubility as a function of temperature, pressure and density. The equation can also be used to check the self-consistency of the experimental data of liquid phase compositions for supercritical fluid-liquid equilibria. Fifty three different binary systems (carbon-dioxide + liquid) with around 2700 data points encompassing a wide range of compounds like esters, alcohols, carboxylic acids and ionic liquids were successfully modeled for a wide range of temperatures and pressures. Besides the test for self-consistency, based on the data at one temperature, the model can be used to predict the solubility of supercritical fluids in liquids at different temperatures. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes p-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Resumo:
Raman spectra of single crystals of adipic and sebacic acids have been photographed for the first time using λ 2537 excitation. The spectra have been divided into four regions: (a) internal frequencies; (b) summations and overtones; (c) external vibrations; and (d) low-frequency hydrogen bond oscillations. Tentative correlations have been given for all the internal frequencies and summations and overtones. A series of diffuse weak bands observed in the spectra of both these acids in the not, vert, similar2400–2800 cm−1 have been explained as a superposition of O---H frequencies lowered due to hydrogen bond formation over the summations and overtones of fundamentals mainly in the not, vert, similar1000–1500 cm−1 region. Rotatory type of external oscillations of the two formula units of these molecules in their unit cells have been identified at 76, 99, 118 and 165 cm−1 in adipic acid and 66, 95, 117 and 177 cm−1 in the spectrum of sebacic acid. A brief discussion of the low frequency hydrogen bond vibrations in these acids has been made. Making use of the Lippincott—Schroeder potential and assuming a highly anharmonic potential curve for the hydrogen bond, the vibrational frequencies of the bond have been theoretically evaluated. There is very good agreement between these and the experimental values. The results for adipic acid in cm−1 are: 304 (0 → 1), 270 (1 → 2), 241 (2 → 3), 222 (3 → 4) 201 (4 → 5), 183 (5 → 6). In the case of sebacic acid some of the intermediate and higher transitions are absent in the spectrum recorded by the author. From the above data for adipic acid the dissociation energy of the hydrogen bond was evaluated as 5·9 kcal/mole in fair agreement with the values derived from conventional methods.
Resumo:
Protection of the amino group and activation of the carboxylic acid groups are the most important steps associated with any peptide synthesis protocol; hence, a one-pot process to achieve these is highly desirable. A possible strategy is to use pentafluorophenyl carbonates to simultaneously protect the amino group as a carbamate derivative and activate the carboxylic acid group as a pentafluorophenyl ester. A detailed study is carried out to understand the scope and limitations of this method using five different pentaflurophenyl carbonates. The efficiency of these one-pot reactions depends largely on the nature of the pentafluorophenyl carbonates and also on the nature of the amino acids. Electron deficient and sterically less demanding carbonates reacted faster than the others, whereas amino acids with longeraliphatic side chains gave better yields than more polar amino acids.
Resumo:
Condensation reaction involving substituted aminobenzoic acids (2-aminobenzoic acid and 4-aminobenzoic acid) and acetylacetone results in the formation of ketoimines [CH3C(= O)CH2C(CH3)(= NAr)] (Ar = C6H4COOH-4; 1 and C6H4COOH-2 2). Compounds 1 and 2 have been characterized by spectroscopic techniques and by single crystal X-ray diffraction studies. The absorption, emission and lifetime measurement studies have also been performed for the new compounds. While compound 1 forms a linear chain type of aggregation though intermolecular hydrogen bonding, compound 2 forms a discrete dimer in the solid state.
Resumo:
Estimation of the dissociation constant, or pK(a), of weak acids continues to be a central goal in theoretical chemistry. Here we show that ab initio Car-Parrinello molecular dynamics simulations in conjunction with metadynamics calculations of the free energy profile of the dissociation reaction can provide reasonable estimates of the successive pK(a) values of polyprotic acids. We use the distance-dependent coordination number of the protons bound to the hydroxyl oxygen of the carboxylic group as the collective variable to explore the free energy profile of the dissociation process. Water molecules, sufficient to complete three hydration shells surrounding the acid molecule, were included explicitly in the computation procedure. Two distinct minima corresponding to the dissociated and un-dissociated states of the acid are observed and the difference in their free energy values provides the estimate for pK(a), the acid dissociation constant. We show that the method predicts the pK(a) value of benzoic acid in good agreement with experiment and then show using phthalic acid (benzene dicarboxylic acid) as a test system that both the first and second pK(a) values as well, as the subtle difference in their values for different isomers can be predicted in reasonable agreement with experimental data.