196 resultados para CURVE SINGULARITIES
Resumo:
A clear definition of an approximate parametrization of the curve of intersection of (n-1) implicit surfaces in Rn is given. It is justified that marching methods yield such an approximation.
Resumo:
There exists a maximum in the products of the saturation properties such as T(p(c) - p) and p(T-c - T) in the vapour-liquid coexistence region for all liquids. The magnitudes of those maxima on the reduced coordinate system provide an insight to the molecular complexity of the liquid. It is shown that the gradients of the vapour pressure curve at temperatures where those maxima occur are directly given by simple relations involving the reduced pressures and temperatures at that point. A linear relation between the maximum values of those products of the form [p(r)(1 - T-r)](max) = 0.2095 - 0.2415 [T-r(1 - p(r))](max) has been found based on a study of 55 liquids ranging from non-polar monatomic cryogenic liquids to polar high boiling point liquids.
Resumo:
A method has been presented to establish the theoretical dispersion curve for performing the inverse analysis for the Rayleigh wave propagation. The proposed formulation is similar to the one available in literature, and is based on the finite difference formulation of the governing partial differential equations of motion. The method is framed in such a way that it ultimately leads to an Eigen value problem for which the solution can be obtained quite easily with respect to unknown frequency. The maximum absolute value of the vertical displacement at the ground surface is formed as the basis for deciding the governing mode of propagation. With the proposed technique, the numerical solutions were generated for a variety of problems, comprising of a number of different layers, associated with both ground and pavements. The results are found to be generally satisfactory. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper, we present a differential-geometric approach to analyze the singularities of task space point trajectories of two and three-degree-of-freedom serial and parallel manipulators. At non-singular configurations, the first-order, local properties are characterized by metric coefficients, and, geometrically, by the shape and size of a velocity ellipse or an ellipsoid. At singular configurations, the determinant of the matrix of metric coefficients is zero and the velocity ellipsoid degenerates to an ellipse, a line or a point, and the area or the volume of the velocity ellipse or ellipsoid becomes zero. The degeneracies of the velocity ellipsoid or ellipse gives a simple geometric picture of the possible task space velocities at a singular configuration. To study the second-order properties at a singularity, we use the derivatives of the metric coefficients and the rate of change of area or volume. The derivatives are shown to be related to the possible task space accelerations at a singular configuration. In the case of parallel manipulators, singularities may lead to either loss or gain of one or more degrees-of-freedom. For loss of one or more degrees-of-freedom, ther possible velocities and accelerations are again obtained from a modified metric and derivatives of the metric coefficients. In the case of a gain of one or more degrees-of-freedom, the possible task space velocities can be pictured as growth to lines, ellipses, and ellipsoids. The theoretical results are illustrated with the help of a general spatial 2R manipulator and a three-degree-of-freedom RPSSPR-SPR parallel manipulator.
Resumo:
This paper brings out the existence of the maximum in the curvature of the vapour pressure curve. It occurs in the reduced temperature range of 0.6–0.7 for all liquids and has a value of 3.8–4.8. A set of 17 working fluids consisting of several refrigerants, carbon dioxide, cryogenic liquids and water are taken as test fluids. There exists also a minimum close to the critical point which can be observed only when a thermodynamically consistent functional form of the vapour pressure equation is chosen. This feature, in addition to throwing some light on the behaviour of the vapour pressure curve, could provide some useful inputs to the choice of working fluids for vapour pressure thermometers and thermostatic expansion valves.
Resumo:
We provide some conditions for the graph of a Holder-continuous function on (D) over bar, where (D) over bar is a closed disk in C, to be polynomially convex. Almost all sufficient conditions known to date - provided the function (say F) is smooth - arise from versions of the Weierstrass Approximation Theorem on (D) over bar. These conditions often fail to yield any conclusion if rank(R)DF is not maximal on a sufficiently large subset of (D) over bar. We bypass this difficulty by introducing a technique that relies on the interplay of certain plurisubharmonic functions. This technique also allows us to make some observations on the polynomial hull of a graph in C(2) at an isolated complex tangency.
Resumo:
There exists a minimum in the Waring function, psi(T) = -d(ln p)/d(1/T), and in the Riedel function, alpha(T) = d(ln p)/d(In T), in the liquid-vapor coexistence curve for most fluids. By analyzing National Institute of Standards and Technology data for the molar enthalpy of vaporization and the compressibility variation at the liquid-vapor phase change of 105 fluids, we find that the temperatures of these minima are linearly correlated with the critical temperature, T-c. Using reduced coordinates, we also demonstrate that the minima are well-correlated with the acentric factor. These correlations are used for testing four well-known vapor pressure equations in the Pitzer corresponding states scheme.
Resumo:
We reconsider standard uniaxial fatigue test data obtained from handbooks. Many S-N curve fits to such data represent the median life and exclude load-dependent variance in life. Presently available approaches for incorporating probabilistic aspects explicitly within the S-N curves have some shortcomings, which we discuss. We propose a new linear S-N fit with a prespecified failure probability, load-dependent variance, and reasonable behavior at extreme loads. We fit our parameters using maximum likelihood, show the reasonableness of the fit using Q-Q plots, and obtain standard error estimates via Monte Carlo simulations. The proposed fitting method may be used for obtaining S-N curves from the same data as already available, with the same mathematical form, but in cases in which the failure probability is smaller, say, 10 % instead of 50 %, and in which the fitted line is not parallel to the 50 % (median) line.
Resumo:
For most fluids, there exist a maximum and a minimum in the curvature of the reduced vapor pressure curve, p(r) = p(r)(T-r) (with p(r) = p/p(c) and T-r = T/T-c, p(c) and T-c being the pressure and temperature at the critical point). By analyzing National Institute of Standards and Technology (NIST) data on the liquid-vapor coexistence curve for 105 fluids, we find that the maximum occurs in the reduced temperature range 0.5 <= T-r <= 0.8 while the minimum occurs in the reduced temperature range 0.980 <= T-r <= 0.995. Vapor pressure equations for which d(2)p(r)/dT(r)(2) diverges at the critical point present a minimum in their curvature. Therefore, the point of minimum curvature can be used as a marker for the critical region. By using the well-known Ambrose-Walton (AW) vapor pressure equation we obtain the reduced temperatures of the maximum and minimum curvature in terms of the Pitzer acentric factor. The AW predictions are checked against those obtained from NIST data. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we present a segmentation algorithm to extract foreground object motion in a moving camera scenario without any preprocessing step such as tracking selected features, video alignment, or foreground segmentation. By viewing it as a curve fitting problem on advected particle trajectories, we use RANSAC to find the polynomial that best fits the camera motion and identify all trajectories that correspond to the camera motion. The remaining trajectories are those due to the foreground motion. By using the superposition principle, we subtract the motion due to camera from foreground trajectories and obtain the true object-induced trajectories. We show that our method performs on par with state-of-the-art technique, with an execution time speed-up of 10x-40x. We compare the results on real-world datasets such as UCF-ARG, UCF Sports and Liris-HARL. We further show that it can be used toper-form video alignment.
Resumo:
Let M be the completion of the polynomial ring C(z) under bar] with respect to some inner product, and for any ideal I subset of C (z) under bar], let I] be the closure of I in M. For a homogeneous ideal I, the joint kernel of the submodule I] subset of M is shown, after imposing some mild conditions on M, to be the linear span of the set of vectors {p(i)(partial derivative/partial derivative(w) over bar (1),...,partial derivative/partial derivative(w) over bar (m)) K-I] (., w)vertical bar(w=0), 1 <= i <= t}, where K-I] is the reproducing kernel for the submodule 2] and p(1),..., p(t) is some minimal ``canonical set of generators'' for the ideal I. The proof includes an algorithm for constructing this canonical set of generators, which is determined uniquely modulo linear relations, for homogeneous ideals. A short proof of the ``Rigidity Theorem'' using the sheaf model for Hilbert modules over polynomial rings is given. We describe, via the monoidal transformation, the construction of a Hermitian holomorphic line bundle for a large class of Hilbert modules of the form I]. We show that the curvature, or even its restriction to the exceptional set, of this line bundle is an invariant for the unitary equivalence class of I]. Several examples are given to illustrate the explicit computation of these invariants.
Resumo:
The First Order Reversal Curve (FORC) method has been utilised to understand the magnetization reversal and the extent of the irreversible magnetization of the soft CoFe2O4-hard SrFe12O19 nanocomposite in the nonexchange spring and the exchange spring regime. The single peak switching behaviour in the FORC distribution of the exchange spring composite confirms the coherent reversal of the soft and hard phases. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the FORC measurements. (C) 2013 AIP Publishing LLC.