58 resultados para César, Cayo Julio, 100-44 a. C..
Resumo:
Nanocrystalline zinc ferrite (ZFO) has been synthesized from metal acetylacetonates by microwave irradiation for 5 min in the presence of a surfactant. The as-prepared material is ZFO and has been subjected in air to conventional furnace annealing and to rapid annealing at different temperatures. Both annealing protocols lead to well-crystallized ZFO, with crystallite sizes in the range similar to 8-20 nm, which is ferrimagnetic, even at room temperature, with magnetization attaining saturation. While the magnetization M(S) of conventionally annealed ZFO varies with crystallite size in the expected manner, rapid annealing leads to high M(S) even when the crystallite size is relatively large. The coercivity is greater in the conventionally annealed ZFO. Thermal and magnetic measurements suggest that the inhomogeneous site cationic distribution within each crystallite caused by rapid annealing can be used to tailor the magnetic behaviour of nanocrystalline ferrites.
Resumo:
The hot deformation behavior of hot isostatically pressed (HIPd) P/M IN-100 superalloy has been studied in the temperature range 1000-1200 degrees C and strain rate range 0.0003-10 s(-1) using hot compression testing. A processing map has been developed on the basis of these data and using the principles of dynamic materials modelling. The map exhibited three domains: one at 1050 degrees C and 0.01 s(-1), with a peak efficiency of power dissipation of approximate to 32%, the second at 1150 degrees C and 10 s(-1), with a peak efficiency of approximate to 36% and the third at 1200 degrees C and 0.1 s(-1), with a similar efficiency. On the basis of optical and electron microscopic observations, the first domain was interpreted to represent dynamic recovery of the gamma phase, the second domain represents dynamic recrystallization (DRX) of gamma in the presence of softer gamma', while the third domain represents DRX of the gamma phase only. The gamma' phase is stable upto 1150 degrees C, gets deformed below this temperature and the chunky gamma' accumulates dislocations, which at larger strains cause cracking of this phase. At temperatures lower than 1080 degrees C and strain rates higher than 0.1 s(-1), the material exhibits flow instability, manifested in the form of adiabatic shear bands. The material may be subjected to mechanical processing without cracking or instabilities at 1200 degrees C and 0.1 s(-1), which are the conditions for DRX of the gamma phase.
Resumo:
A systematic study of Ar ion implantation in cupric oxide films has been reported. Oriented CuO films were deposited by pulsed excimer laser ablation technique on (1 0 0) YSZ substrates. X-ray diffraction (XRD) spectra showed the highly oriented nature of the deposited CuO films. The films were subjected to ion bombardment for studies of damage formation, Implantations were carried out using 100 keV Arf over a dose range between 5 x 10(12) and 5 x 10(15) ions/cm(2). The as-deposited and ion beam processed samples were characterized by XRD technique and resistance versus temperature (R-T) measurements. The activation energies for electrical conduction were found from In [R] versus 1/T curves. Defects play an important role in the conduction mechanism in the implanted samples. The conductivity of the film increases, and the corresponding activation energy decreases with respect to the dose value.
Resumo:
A novel stress-induced martensitic phase transformation in an initial < 100 >/{100} B2-CuZr nanowire is reported for the first time in this letter. Such behavior is observed in a nanowire with cross-sectional dimensions of 19.44 x 19.44 angstrom(2) over a temperature range of 100-400 K and at a strain rate of 1 x 10(9) s(-1) using atomistic simulations. Phase transformation from an initial B2 phase to a BCT (Body-Centered-Tetragonal) phase is observed via nucleation and propagation of {100} twinning plane under high strain rate tensile deformation. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Studies on the extractability of polyphenoloxidase (PPO) from the pulp of five banana cultivars revealed a varietal difference in the nature of binding of the PPO in the cell, with the enzyme being entirely in the soluble fraction in one and partly associated with the cell wall in others, necessitating use of a detergent to release it from the latter. Partial purification by acetone precipitation and chromatography using a DEAE-cellulose column yielded two major fractions DE-I and DE-II with purifications of 4- and 16·3-fold and activity recoveries of 38·2 and 43·3% respectively. Further gel filtration of the two fractions on a Sephadex G-100 column improved the purifications to 44- and 50-fold respectively with full activity recovery. Polyacrylamide gel electrophoretic studies showed the two fractions to be composed of isoenzymes differing in pattern. The purified enzyme showed maximum absorption at 275 nm.
Resumo:
An investigation of the problem of controlled doping of amorphous chalcogenide semiconductors utilizing a Bridgman anvil high pressure technique, has been undertaken. Bulk amorphous semiconducting materials (GeSe3.5)100-x doped with M = Bi (x = 2, 4, 10) and M = Sb (x = 10) respectively are studied up to a pressure of 100 kbar down to liquid nitrogen temperature, with a view to observe the impurity induced modifications. Measurement of the electrical conductivity of the doped samples under quasi-hydrostatic pressure reveals that the pressure induced effects in lightly doped (2 at % Bi) and heavily doped (x = 4, 10) semiconductors are markedly different. The pressure effects in Sb-doped semiconductors are quite different from those in Bi-doped material.
Resumo:
M r=275.8, monoclinic, P21/a, a= 12.356 (5), b=9.054 (4), c= 14.043 (4) A, t= 100.34 (3) ° , V=1545.5A 3, Z=4, D,,,= 1.14, D x = 1.185 Mg m -3, p(Mo Ka, /l = 0.7107 ]k) = 2.77 mm -1, F(000) = 584.0, T= 293 K, R = 0.053 for 1088 reflections. The four-membered ring is buckled 13.0 ° (0= 167.0°). The azetidinium moiety is linked to the C1- ion through a hydrogen bond [O-H...C1 = 3.166 (5) A].
Resumo:
Electrical transport in Bi doped amorphous semiconductors (GeSe3.5)100-xBix (x=0,4,10) is studied in a Bridgman anvil system up to a pressure of 90 kbar and down to 77 K. A pressure induced continuous transition from an amorphous semiconductor to a metal-like solid is observed in GeSe3.5. The addition of Bi disturbs significantly the behaviour of resistivity with pressure. The results are discussed in the light of molecular cluster model for GeySe1-y proposed by Phillips.
Resumo:
Three overlapping assembled epitopes of beta hCG have been mapped using MAb probes and a single step solid phase radioimmunoassay. These epitopes have been shown to be at receptor binding region comprising of the loop region beta Cys93-Cys100. Importance of disulphide bonds in maintaining integrity of these epitopes is assessed. Two MAbs (INN 58 and INN 22) interact with the beta region as well as the alpha C-terminal peptide, while the other MAb INN 24 interacts with only the beta region. Cross-reactivity pattern with beta hCG and hLH as web as the reported crystal structure of hCG substantiates the epitope identification. The results demonstrate utility of MAbs as probes in investigations on three-dimensional structure of gonadatropins.
Resumo:
Crystalline complexes of succinic acid with DL- and L-lysine have been prepared and analysed by X-ray diffraction. DL-Lysine complex: C6HIsN202 + 1 2- 1 ~C4H404 .~C4H604, Mr -- 264"2, PI, a = 5"506 (4), =8.070(2), c=14.089(2) A,, a=92.02(1), /3= 100"69 (3), y = 95"85 (3) ~>, Z = 2, Dx = 1"44 g cm -3, R = 0.059 for 2546 observed reflections. Form I of the e-lysine complex: C6HIsN20-, ~ .C4H504, Mr = 264.2, P1, a = 5" 125 (2), b = 8"087 (1), c = 8"689 (1) A,, a = 112.06 (1), /3 = 99.08 (2), y = 93"77(2) °, Z--l, D,,,=1"34(3), Dx=l"34gcm 3 R = 0.033 for 1475 observed reflections. Form II of + I 2- the e-lysine complex: C6H15N202 .,iC4H404 .- 1 I ") 4C4H604.4(C4HsO4""H'"CaH404)" , Mr = 264"2, P1, a = 10.143 (4), b = 10.256 (2), c = 12"916 (3) A,, a = 105.00 (2),/3 = 99-09 (3), y = 92"78 (3)::, Z = 4, Dm= 1"37(4), D,.= 1.38gcm 3, R=0.067 for 2809 observed reflections. The succinic acid molecules in the structures exhibit a variety of ionization states. Two of the lysine conformations found in the complexes have been observed for the first time in crystals containing lysine. Form II of the L-lysine complex is highly pseudosymmetric. In all the complexes, unlike molecules aggregate into separate alternating layers. The basic element of aggregation in the lysine layer in the complexes is an S2-type head-to-tail sequence. This element combines in different ways in the three structures. The basic element of aggre gation in the succinic acid layer in the complexes is a hydrogen-bonded ribbon. The ribbons are interconnected indirectly through amino groups in the lysine layer.
Resumo:
A novel stress induced martenistic phase transformation is reported in an initial B2-CuZr nanowire of cross-sectional dimensions in the range of 19.44 x 19.44-38.88 x 38.88 angstrom(2) and temperature in the range of 10-400 K under both tensile and compressive loading. Extensive Molecular Dynamic simulations are performed using an inter-atomic potential of type Finnis and Sinclair. The nanowire shows a phase transformation from an initial B2 phase to BCT (body-centered-tetragonal) phase with failure strain of similar to 40% in tension, whereas in compression, comparatively a small B2 -> BCT phase transformation is observed with failure strain of similar to 25%. Size and temperature dependent deformation mechanisms which control ultimately the B2 -> BCT phase transformation are found to be completely different for tensile and compressive loadings. Under tensile loading, small cross-sectional nanowire shows a single step phase transformation, i.e. B2 -> BCT via twinning along {100} plane, whereas nanowires with larger cross-sectional area show a two step phase transformation, i.e. B2 -> R phase -> BCT along with intermediate hardening. In the first step, nanowire shows phase transformation from B2 -> R phase via twinning along {100} plane, afterwards the nanowire deforms via twinning along {110} plane which cause further transformation from R phase -> BCT phase. Under compressive loading, the nanowire shows crushing along {100} plane after a single step phase transformation from B2 -> BCT. Proper tailoring of such size and temperature dependent phase transformation can be useful in designing nanowire for high strength applications with corrosion and fatigue resistance. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
The analogy between N-H center dot center dot center dot O and C-H center dot center dot center dot O intermolecular interactions is studied with variable temperature (180-100 K) single crystal X-ray diffraction analysis.5,5-Diethylbarbituric acid (barbital) forms isostructural molecular complexes (co-crystals) with urea (1) and acetamide (2) that respectively contain these analogous interactions.The behaviour of these two interactions as a function of temperature is very similar. This indicates that the C-H center dot center dot center dot O bond in barbital acetamide plays a similar chemical and structural role as does the N-H center dot center dot center dot O bond in barbital urea. The close relationship between these interactions and their comparable nature is further adduced from the formation of a ternary solid solution (3) of barbital, urea and acetamide. The fact that the C-H center dot center dot center dot O interaction in barbital acetamide is weaker than the N-H center dot center dot center dot O interaction in barbital urea is shown by the fact that acetamide is under expressed and urea is over expressed with respect to the quantities of these substances present in solution prior to crystallization of these ternary crystals.
Resumo:
Transparent glasses of various compositions in the system (100 -x)(Li2B4O7)-x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. The glassy nature of the as-quenched samples was established by differential thermal analyses (DTA). X-ray powder diffraction studies confirmed the as-quenched glasses to be amorphous and the heat-treated to be nanocrystalline. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the size of the crystallites to be in the nano-range and confirmed the phase to be that of Ba5Li2Ti2Nb8O30 (BLTN) which was, initially, identified by X-ray powder diffraction. The frequency, temperature and compositional dependence of the dielectric constant and the electrical conductivity of the glasses and glass nanocrystal composites were investigated in the 100 Hz to 10 MHz frequency range. Electrical relaxations were analyzed using the electric modulus formalisms. The imaginary part of electric modulus spectra was modeled using an approximate solution of Kohlrausch-Williams-Watts relation. The frequency dependent electrical conductivity was rationalized using Jonscher's power law. The activation energy associated with the dc conductivity was ascribed to the motion of Li+ ions in the glass matrix. The activation energy associated with dielectric relaxation was almost equal to that of the dc conductivity, indicating that the same species took part in both the processes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Optically clear glasses of various compositions in the system (100-x)Li2B4O7 center dot x(Ba5Li2Ti2Nb8O30) (5 <= x <= 20, in molar ratio) were fabricated by splat quenching technique. Controlled heat-treatment of the as-quenched glasses at 500 degrees C for 8 h yielded nanocrystallites embedded in the glass matrix. High Resolution Transmission Electron Microscopy (HRTEM) of these samples established the composition of the nano-crystallites to be that of Ba5Li2Ti2Nb8O30. B-11 NMR studies revealed the transformation of BO4 structural units into BO3 units owing to the increase in TiO6 and NbO6 structural units as the composition of Ba5Li2Ti2Nb8O30 increased in the glass. This, in turn, resulted in an increase in the density of the glasses. The influence of the nominal composition of the glasses and glass nanocrystal composites on optical band gap (E-opt), Urbach energy (Delta E), refractive index (n), molar refraction (R-m), optical polarizability (alpha(m)) and third order non-linear optical susceptibility (chi(3)) were studied.
Resumo:
Nanocrystalline Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta of similar to 4 nm sizes were synthesized by a sonochemical method using diethyletriamine (DETA) as a complexing agent. Compounds were characterized by powder X-ray diffraction (XRD), X-ray photo-electron spectroscopy (XPS) and transmission electron microscopy (TEM). Ce1-xFexO2-delta (0 <= x <= 0.45) and Ce0.65Fe0.33Pd0.02O2-delta crystallize in fluorite structure where Fe is in +3, Ce is in +4 and Pd is in +2 oxidation state. Due to substitution of smaller Fe3+ ion in CeO2, lattice oxygen is activated and 33% Fe substituted CeO2 i.e. Ce0.67Fe0.33O1.835 reversibly releases 0.31O] up to 600 degrees C which is higher or comparable to the oxygen storage capacity of CeO2-ZrO2 based solid solutions (Catal. Today 2002, 74, 225-234). Due to interaction of redox potentials of Pd2+/0(0.89 V) and Fe3+/2+ (0.77 V) with Ce4+/3+ (1.61 V), Pd ion accelerates the electron transfer from Fe2+ to Ce4+ in Ce0.65Fe0.33Pd0.02O1.815, making it a high oxygen storage material as well as a highly active catalyst for CO oxidation and water gas shift reaction. The activation energy for CO oxidation with Ce0.65Fe0.33Pd0.02O1.815 is found to be as low as 38 kJ mol(-1). Ce0.67Fe0.33O1.835 and Ce0.65Fe0.33Pd0.02O1.815 have also shown high activity for the water gas shift reaction. CO conversion to CO2 is 100% H-2 specific with these catalysts and conversion rate was found to be as high 27.2 mu moles g(-1) s(-1) and the activation energy was found to be 46.4 kJ mol(-1) for Ce0.65Fe0.33Pd0.02O1.815.