457 resultados para Beta-oxidation
Resumo:
Ce1-xSnxO2 (x = 0.1-0.5) solid solution and its Pd substituted analogue have been prepared by a single step solution combustion method using tin oxalate precursor. The compounds were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), and H-2/temperature programmed redution (TPR) studies. The cubic fluorite structure remained intact up to 50% of Sri substitution in CeO2, and the compounds were stable up to 700 C. Oxygen storage capacity of Ce1-xSnxO2 was found to be much higher than that of Ce1-xZrxO2 due to accessible Ce4+/Ce3+ and Sn4+/Sn2+ redox couples at temperatures between 200 and 400 C. Pd 21 ions in Ce0.78Sn0.2Pd0.02O2-delta are highly ionic, and the lattice oxygen of this catalyst is highly labile, leading to low temperature CO to CO2 conversion. The rate of CO oxidation was 2 mu mol g(-1) s(-1) at 50 degrees C. NO reduction by CO with 70% N-2 selectivity was observed at similar to 200 degrees C and 100% N-2 selectivity below 260 degrees C with 1000-5000 ppm NO. Thus, Pd2+ ion substituted Ce1-xSnxO2 is a superior catalyst compared to Pd2+ ions in CeO2, Ce1-xZrxO2, and Ce1-xTixO2 for low temperature exhaust applications due to the involvement of the Sn2+/Sn4+ redox couple along with Pd2+/Pd-0 and Ce4+/Ce3+ couples.
Resumo:
The mode of action of xylanase and beta-glucosidase purified from the culture filtrate of Humicola lanuginosa (Griffon and Maublanc) Bunce on the xylan extracted from sugarcane bagasse and on two commercially available larchwood and oat spelt xylans, on xylooligomers and on arabinoxylooligomers was studied. While larchwood and oat spelt xylans were hydrolyzed to the same extent in 24 h, sugarcane bagasse xylan was hydrolyzed to a lesser extent in the same period. It was found that the rate of hydrolysis of xylooligomers by xylanase increased with increase in chain length, while beta-glucosidase acted rather slowly on all the oligomers tested. Xylanase exhibited predominant ''endo'' action on xylooligomers attacking the xylan chain at random while beta-glucosidase had ''exo'' action, releasing one xylose residue at a time. On arabinoxylooligomers, however, xylanase exhibited ''exo'' action. Thus, it appears that the presence of the arabinose substituent has, in some way, rendered the terminal xylose-xylose linkage more susceptible to xylanase action. It was also observed that even after extensive hydrolysis with both the enzymes, substantial amounts of the parent arabinoxylooligomer remained unhydrolyzed together with the accumulation of arabinoxylobiose. It can therefore be concluded that the presence of the arabinose substituent in the xylan chain results in linkages that offer resistance to both xylanase and beta-glucosidase action.
Resumo:
Oxygen release accompanying oxidation of vanadyl by diperoxovanadate was suppressed on addition of NADH. The added NADH was rapidly oxidized, oxygen in the medium was consumed, and the reaction terminated on exhaustion of either NADH or vanadyl. The consumption of oxygen and disappearance of NADH needed small concentrations of diperoxovanadate to initiate and increased with increase in the concentration of vanadyl and NADH or decrease of pH. The products of the reaction were found to be NAD(+) from NADH and vanadate oligomers from vanadyl and oxygen. The reaction was insensitive to catalase and was not dependent on H2O2. The reaction was inhibited by superoxide dismutase, cytochrome c, EDTA, Mn2+, histidine, and DMPO, but not by hydroxyl radical scavengers such as ethanol and benzoate, The ESR spectrum of the reaction mixture showed the presence of the 1:2:2:1 quartet signal typical of a DMPO-OH adduct, but this was not modified by ethanol, This oxygen radical species, possibly of (OV)-O-. type derived from diperoxovanadate, is proposed to have a role in the reactions of oxygen release and NADH oxidation
Resumo:
The present work provides an insight into the dry sliding wear behavior of titanium based on synergy between tribo-oxidation and strain rate response. Pin-on-disc tribometer was used to characterize the friction and wear behavior of titanium pin in sliding contact with polycrystalline alumina disk under ambient and vacuum condition. The sliding speed was varied from 0.01 to 1.4 ms(-1), normal load was varied from 15.3 to 76 N and with a sliding distance of 1500 m. It was seen that dry sliding wear behavior of titanium was governed by combination of tribo-oxidation and strain rate response in near surface region of titanium. Strain rate response of titanium was recorded by conducting uni-axial compression tests at constant true strain rate of 100 s(-1) in the temperature range from 298 to 873 K. Coefficient of friction and wear rate were reduced with increased sliding speed from 0.01 to 1.0 ms(-1). This is attributed to the formation of in situ self lubricating oxide film (TiO) and reduction in the intensity of adiabatic shear band cracking in the near surface region. This trend was confirmed by performing series of dry sliding tests under vacuum condition of 2 x 10(-4) Torr. Characterization tools such as optical microscopy, scanning electron microscopy, and X-ray diffractometer provided evidence of such processes. These experimental findings can be applied to enhance the dry sliding wear behavior of titanium with proper choice of operating conditions such as sliding speed, normal load, and environment.
Resumo:
To correlate the Raman frequencies of the amide I and III bands to beta-turn structures, three peptides shown to contain beta-turn structure by x-ray diffraction and NMR were examined. The compounds examined were tertiary (formula: see text). The amide I band of these compounds is seen at 1,668, 1,665, and 1,677 cm-1, and the amide III band appears at 1,267, 1,265, and 1,286 cm-1, respectively. Thus, it is concluded that the amide I band for type III beta-turn structure appears in the range between 1,665 and 1,677 cm-1 and the amide III band between 1,265 and 1,286 cm-1.
Resumo:
The structure and conformation of a second crystalline modification of 19-nortestosterone has been determined by X-ray methods. M r = 274, monoclinic P2 l, a=9.755(2), b= 11.467(3), c= 14.196(3)/L fl=101.07(2) ° , V=1558.4 (8) A 3, Z=4, Ox= I. 168 g cm -3, Mo Ka, 2 = 0.7107 ,/k, ~ = 0.80 cm -l, F(000) = 600, T= 300 K. R = 0.060 for 2158 observed reflections. The two molecules in the asymmetric unit show significant differences in the A-ring conformation from that of the previously reported form of the title compound [Precigoux, Busetta, Courseille & Hospital (1975). Acta Cryst. B31, 1527-1532]. The l a,2fl-half-chair conformation of the A ring increases its conformational freedom compared with testosterone.
Resumo:
The probable modes of binding for methyl-α-d-sophoroside, methyl-β-d-sophoroside, laminariboise and cellobiose to concanavalin A have been determined using theoretical methods. Methyl-d-sophorosides can bind to concanavalin A in two modes, i.e. by placing their reducing as well as non-reducing sugar units in the carbohydrate specific binding site, whereas laminaribiose and cellobiose can reach the binding site only with their non-reducing glucose units. However, the probability for methyl-α-d-sophoroside to bind to concanavalin A with its reducing sugar residue as the occupant of the binding site is much higher than it is with its non-reducing sugar residue as the occupant of the sugar binding site. A few of the probable conformers of methyl-β-d-sophoroside can bind to concanavalin A with either the reducing or non-reducing glucose unit. Higher energy conformers of cellobiose or laminaribiose can reach the binding site with their non-reducing residues alone. The relative differences in the binding affinities of these disaccharides are mainly due to the differences in the availability of proper conformers which can reach the binding site and to non-covalent interactions between the sugar and the protein. This study also suggests that though the sugar binding site of concanavalin A accommodates a single sugar residue, the residue outwards from the binding site also interacts with concanavalin A, indicating the existence of extended concanavalin A carbohydrate interactions.
Resumo:
The binding of Ricinus communis (castor-bean) agglutinin 1 to saccharides was studied by equilibrium dialysis and fluorescence polarization by using the fluorescently labelled sugar 4-methylumbelliferyl beta-D-galactopyranoside. No appreciable change in ligand fluorescence of 4-methylumbelliferyl beta-D-galactopyranoside was considerably polarized on its binding to the lectin. The association constants obtained by Scatchard analysis of equilibrium-dialysis and fluorescence-polarization data do not differ much from each other, and at 25 degrees C, Ka = 2.4 (+/- 0.2) X 10(4)M-1. These values agree reasonably well with that reported in the literature for Ricinus agglutinin 1. The number of binding sites obtained by the different experimental procedures is 1.94 +/- 0.1 per molecule of 120 000 daltons and is equal to the reported value of 2. The consistency in the values of Ka and number of binding sites indicate the absence of additional subsites on Ricinus agglutinin 1 for its specific sugars. In addition, the excellent agreement between the binding parameters obtained by equilibrium dialysis and fluorescence polarization indicate the potential of ligand-fluorescence-polarization measurements in the investigation of lectin-sugar interactions.
Resumo:
Broad-spectrum antibiotics with heterocyclic side chains strongly inhibit peroxidase-catalyzed iodination in the presence of metallo--lactamase. This suggests that antibiotic resistance due to hydrolysis of the -lactam ring in antibiotics would have negative effects on thyroid activity.
Resumo:
Photo-oxidation of α,β-unsaturated thiones yields the corresponding ketones as the only product. Studies carried out on three systems, namely thioketones, α,β-unsaturated thiones and thioketenes, have revealed that there exists a similarity in their mechanism of oxidation. It has been suggested that the thiocarbonyl chromophore is the site of attack by singlet oxygen in α,β-unsaturated thiones and that the adjacent C-C double bond is inert under these conditions. Absence of sulphine during the oxidation of α,β-unsaturated thiones is attributed to the electronic factors operating on the zwitterionic/diradical intermediate. While α,β-unsaturated ketones are poorly reactive, α,β-unsaturated thiones are highly reactive toward singlet oxygen.
Resumo:
Condensing enzymes play an important and decisive role in terms of fatty acid composition of any organism. They can be classified as condensing enzymes involved in initiating the cycle and enzymes involved in elongating the initiated fatty acyl chain. In E. coli, two isoforms for the elongation condensing enzymes (FabB and FabF) exists whereas Plasmodium genome contains only one isoform. By in vitro complementation studies in E. coli CY244 cells, we show that PfFabB/ functions like E. coli FabF as the growth of the mutant cells could rescued only in the presence of oleic acid. But unlike bacterial enzyme, PfFabB/F does not increase the cis-vaccenic acid content in the mutant cells upon lowering the growth temperature. This study thus highlights the distinct properties of P. falciparum FabF which sets it apart from E. coli and most other enzymes of this family, described so far.
Resumo:
Oxidation of diaryl, aryl alkyl, and dialkyl thioketones by singlet oxygen generated via self-sensitization and other independent methods yielded the corresponding ketone and sulfine in varying amounts. A zwitterionic/ diradical intermediate arising out of the primary interaction of singlet oxygen with the thiocarbonyl chromophore is believed to be the common intermediate for the ketone and sulfine. While closure of the zwitterion/diradical to give 1,2,3-dioxathietane would lead to the ketone, competing oxygen elimination is believed to lead to the sulfine. This partitioning is governed by steric and electronic factors operating on the zwitterionic/diradical intermediate.
Resumo:
An Auger study of the oxidation of zinc has been carried out to confirm that the relative intensities of the metal lines in election-beam induced Auger spectra are directly proportional to the number of valence electrons and therefore of direct use in investigating surface oxidation of metals.
Resumo:
Surface oxidation of the metallic glass Fe40Ni38Mo4B18 has been studied by X-ray photoelectron spectroscopy. The oxidation behaviour of the metallic glass has been compared with a crystallized sample of the same composition. A similar study has been carried out on the metallic glass Ni76Si12B12,which shows the importance of chemical composition in determining the surface oxidation behaviour of these alloys.