38 resultados para Accessibility and mobility
Resumo:
A highly transparent all ZnO thin film transistor (ZnO-TFT) with a transmittance of above 80% in the visible part of the spectrum, was fabricated by direct current magnetron sputtering, with a bottom gate configuration. The ZnO-TFT with undoped ZnO channel layers deposited on 300 nm Zn0.7Mg0.3O gate dielectric layers attains an on/off ratio of 104 and mobility of 20 cm2/V s. The capacitance-voltage (C−V) characteristics of the ZnO-TFT exhibited a transition from depletion to accumulation with a small hysteresis indicating the presence of oxide traps. The trap density was also computed from the Levinson’s plot. The use of Zn0.7Mg0.3O as a dielectric layer adds additional dimension to its applications. The room temperature processing of the device depicts the possibility of the use of flexible substrates such as polymer substrates. The results provide the realization of transparent electronics for next-generation optoelectronics.
Resumo:
Breakout noise from HVAC ducts is important at low frequencies, and the coupling between the acoustic waves and the structural waves plays a critical role in the prediction of the transverse transmission loss. This paper describes the analytical calculation of breakout noise by incorporating three-dimensional effects along with the acoustical and structural wave coupling phenomena. The first step in the breakout noise prediction is to calculate the inside duct pressure field and the normal duct wall vibration by using the solution of the governing differential equations in terms of Green's function. The resultant equations are rearranged in terms of impedance and mobility, which results in a compact matrix formulation. The Green's function selected for the current problem is the cavity Green's function with modification of wave number in the longitudinal direction in order to incorporate the terminal impedance. The second step is to calculate the radiated sound power from the compliant duct walls by means of an ``equivalent unfolded plate'' model. The transverse transmission loss from the duct walls is calculated using the ratio of the incident power due to surface source inside the duct to the acoustic power radiated from the compliant duct walls. Analytical results are validated with the FE-BE numerical models.
Resumo:
Presented is a new method for making composition graded metal-ceramic composites using reactive inter-diffusion between a metal and a complex ceramic. Composition variation in both metal and ceramic phases with distance along the direction of diffusion is achieved. The design criteria for developing such composites are discussed. The system should exhibit extensive solid solubility in both metallic and ceramic phases, a defined gradation in the stabilities of the oxides, and mobility of electrons or holes in the oxide solid solution. The complex ceramic used for making the composite should be polycrystalline with sufficient porosity to accommodate the volume expansion caused by alloy precipitation. An inert atmosphere to prevent oxidation and high processing temperature to facilitate diffusive transport are required. The process is illustrated using the reaction couples Fe-NiTiO3, Fe-(Mg,Co)TiO3 and Fe-(Ni,Co)TiO3.
Resumo:
Engineering devices with a large electrical response to magnetic field is of fundamental importance for a range of applications such as magnetic field sensing and magnetic read heads. We show that a colossal nonsaturating linear magnetoresistance (NLMR) arises in two-dimensional electron systems hosted in a GaAs/AlGaAs heterostructure in the strongly insulating regime. When operated at high source-drain bias, the magnetoresistance of our devices increases almost linearly with magnetic field, reaching nearly 10 000% at 8 T, thus surpassing many known nonmagnetic materials that exhibit giant NLMR. The temperature dependence and mobility analysis indicate that the NLMR has a purely classical origin, driven by nanoscale inhomogeneities. A large NLMR combined with small device dimensions makes these systems an attractive candidate for on-chip magnetic field sensing.
Resumo:
Mobile ad-hoc network is a wireless ad-hoc network with dynamic network topology. The Dynamicity, due to the random node movement, and scarcity of resources lead to a challenge in monitoring the nodes in a MANET. Monitoring the lack of resources (bandwidth, buffer, and energy), misbehavior, and mobility at node level remains, a challenge. In a MANET the proposed protocol uses both static as well as mobile agents, where the mobile agents migrate to different clusters of the zones respectively, collect the node status information periodically, and provide a high level information to the static agent (which resides at the central node) by analyzing the raw information at the nodes. This, in turn, reduces the network traffic and conserves the workload of the central node, where a static agent is available with high level information and in coordination with other modules. The protocol has been tested in different size MANETs with variable number of nodes and applications. The results shown in the simulation indicates the effectiveness of the protocol.
Resumo:
The enzyme SAICAR synthetase ligates aspartate with CAIR (5'-phosphoribosyl-4-carboxy-5-aminoimidazole) forming SAICAR (5-amino-4-imidazole-N-succinocarboxamide ribonucleotide) in the presence of ATP. In continuation with our previous study on the thermostability of this enzyme in hyper-/thermophiles based on the structural aspects, here, we present the dynamic aspects that differentiate the mesophilic (E. coli, E. chaffeensis), thermophilic (G. kaustophilus), and hyperthermophilic (M. jannaschii, P. horikoshii) SAICAR synthetases by carrying out a total of 11 simulations. The five functional dimers from the above organisms were simulated using molecular dynamics for a period of 50 ns each at 300 K, 363 K, and an additional simulation at 333 K for the thermophilic protein. The basic features like root-mean-square deviations, root-mean-square fluctuations, surface accessibility, and radius of gyration revealed the instability of mesophiles at 363 K. Mean square displacements establish the reduced flexibility of hyper-/thermophiles at all temperatures. At the simulations time scale considered here, the long-distance networks are considerably affected in mesophilic structures at 363 K. In mesophiles, a comparatively higher number of short-lived (having less percent existence time) C alpha, hydrogen bonds, hydrophobic interactions are formed, and long-lived (with higher percentage existence time) contacts are lost. The number of time-averaged salt-bridges is at least 2-fold higher in hyperthermophiles at 363 K. The change in surface accessibility of salt-bridges at 363 K from 300 K is nearly doubled in mesophilic protein compared to proteins from other temperature classes.
Resumo:
The present work aims to investigate the phase transition, dispersion and diffusion behavior of nanocomposites of carbon nanotube (CNT) and straight chain alkanes. These materials are potential candidates for organic phase change materials(PCMs) and have attracted flurry of research recently. Accurate experimental evaluation of the mass, thermal and transport properties of such composites is both difficult as well as economically taxing. Additionally it is crucial to understand the factors that results in modification or enhancement of their characteristic at atomic or molecular level. Classical molecular dynamics approach has been extended to elucidate the same. Bulk atomistic models have been generated and subjected to rigorous multistage equilibration. To reaffirm the approach, both canonical and constant-temperature, constant-pressure ensembles were employed to simulate the models under consideration. Explicit determination of kinetic, potential, non-bond and total energy assisted in understanding the enhanced thermal and transport property of the nanocomposites from molecular point of view. Crucial parameters including mean square displacement and simulated self diffusion coefficient precisely define the balance of the thermodynamic and hydrodynamic interactions. Radial distribution function also reflected the density variation, strength and mobility of the nanocomposites. It is expected that CNT functionalization could improve the dispersion within n-alkane matrix. This would further ameliorate the mass and thermal properties of the composite. Additionally, the determined density was in good agreement with experimental data. Thus, molecular dynamics can be utilized as a high throughput technique for theoretical investigation of nanocomposites PCMs. (C) 2015 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.
Resumo:
Although globular proteins are endowed with well defined three-dimensional structures, they exhibit substantial mobility within the framework of the given threedimensional structure. The different types of mobility found in proteins by and large correspond to the different levels of organisational hierarchy in protein architecture. They are of considerable structural and functional significance, and can be broadly classified into(a) thermal and conformational fluctuations, (b) segmental mobility, (c) interdomain mobility and (d) intersubunit mobility. Protein crystallographic studies has provided a wealth of information on all of them. The temperature factors derived from X-ray diffraction studies provide a measure of atomic displacements caused by thermal and conformational fluctuations. The variation of displacement along the polypeptide chain have provided functionally significant information on the flexibility of different regions of the molecule in proteins such as myoglobin, lysozyme and prealbumin. Segmental mobility often involves the movement of a region or a segment of a molecule with respect to the rest, as in the transition between the apo and the holo structures of lactate dehydrogenase. It may also involve rigidification of a disordered region of the molecule as in the activation of the zymogens of serine proteases. Transitions between the apo and the holo structures of alcohol dehydrogenase,and between the free and the sugar bound forms of hexokinase, are good examples of interdomain mobility caused by hinge-bending. The capability of different domains to move semi-independently contributes greatly to the versatility of immunoglobulin molecules. Interdomain mobility in citrate synthase appears to be more complex and its study has led to an alternative description of domain closure. The classical and the most thoroughly studied case of intersubunit mobility is that in haemoglobin. The stereochemical mechanism of the action of this allosteric protein clearly brings out the functional subtilities that could be achieved through intersubunit movements. In addition to ligand binding and activation,environmental changes also often cause structural transformations. The reversible transformation between 2 Zn insulin and 4 Zn insulin is caused by changes in the ionic strength of the medium. Adenylate Kinase provides a good example for functionally significant reversible conformational transitions induced by variation in pH. Available evidences indicate that reversible structural transformations in proteins could also be caused by changes in the aqueous environment, including those in the amount of water surrounding protein molecules.
Resumo:
The diffusion coefficient, D, and the ionic mobility, μ, in the protonic conductor ammonium ferrocyanide hydrate have been determined by the isothermal transient ionic current method. D is also determined from the time dependence of the build up of potential across the samples and theretical expressions describing this build up in terms of double exponential dependence on time are obtained. The values obtained are D=3.875×10−11m2s−1 and μ=1.65×10−9 m2V−1s−1.
Resumo:
A randomly interrupted strand model of a one-dimensional conductor is considered. An exact analytical expression is obtained for the temperature-dependent ac mobility for a finite segment drawn at random, taking into account the reflecting barriers at the two open ends. The real part of mobility shows a broad resonance as a function of both frequency and temperature, and vanishes quadratically in the dc limit. The frequency (temperature) maximum shifts to higher values for higher temperatures (frequencies).
Resumo:
The ratio of diffusion coefficient to mobility (D/¿) for electrons has been measured in SF6-air and freon-nitrogen mixtures for various concentrations of SF6 and freon in the mixtures over the range 140¿ E/p¿ 220 V.cm-1 - torr-1. In SF6-air mixtures, the values of D/¿ were always observed to lie intermediate between the values for the pure gases. However, in freon-nitrogen mixtures, with a small concentration (10 percent) of freon in the mixture, the values of D/¿ are found to lie above the boundaries determined by the pure gases. In this mixture, over the lower E/p range (140 to 190) the electrons appear to lose a large fraction of their energy by the excitation of the complex freon molecules, while at higher E/p values (200 to 240), the excitation and consequent deexcitation of nitrogen molecules and its metastables seem to cause an increased rate of ionization of freon molecules.
Resumo:
By applying the theory of the asymptotic distribution of extremes and a certain stability criterion to the question of the domain of convergence in the probability sense, of the renormalized perturbation expansion (RPE) for the site self-energy in a cellularly disordered system, an expression has been obtained in closed form for the probability of nonconvergence of the RPE on the real-energy axis. Hence, the intrinsic mobility mu (E) as a function of the carrier energy E is deduced to be given by mu (E)= mu 0exp(-exp( mod E mod -Ec) Delta ), where Ec is a nominal 'mobility edge' and Delta is the width of the random site-energy distribution. Thus mobility falls off sharply but continuously for mod E mod >Ec, in contradistinction with the notion of an abrupt 'mobility edge' proposed by Cohen et al. and Mott. Also, the calculated electrical conductivity shows a temperature dependence in qualitative agreement with experiments on disordered semiconductors.
Resumo:
During the course of preparation of a master plan for the transportation networks in Bangalore city, mapping the various initiatives and interventions planned towards addressing mobility, existing situation and implications of some of the proposed interventions was analysed. The inferences are based on existing transportation network; synthesis of various transportation related studies and proposed infrastructure initiatives (road works) in Bangalore. Broadly, they can be summarized as following five aspects: I. Need for ~Sreclassifying~T existing road networks (arterial and sub-arterial) with effective geospatial database in the back-end. II. The proposed Core Ring Road at surface grade may not be feasible. III. Current interventions encouraging more independent motorable transport by way of road widening, construction of underpasses, flyovers and grade-separators would not ease traffic congestion when addressed in isolation. IV. Factors affecting time and cost-overruns in infrastructure projects and ways to tackle are discussed. V. Initiatives required for addressing effective planning for operations recommended.