99 resultados para ACID-BASE REACTIONS
Resumo:
We describe in this paper the synthesis and characterization of a new layered phosphate, MoOPO4 . 2H(2)O (I), and its intercalation chemistry. The phosphate I, crystallizing in a tetragonal structure (a = 6.375(7), c = 7.80(1) Angstrom, and Z = 2) similar to that of VOPO4 . 2H(2)O, has been synthesized by the reduction of MoO2(HPO4). H2O (II) using ethylene glycol in an CH3CN medium at similar to 60 degrees C. Interestingly, I could be readily oxidized back to II using Br-2 in CH3CN at room temperature. Considering the close structural relationship existing between I and II, it is likely that the reduction and oxidation of the phosphates proceed by a topotactic mechanism. I is a novel layered host intercalating a variety of organic bases such as n-alkylamines, pyridine, and aniline, mainly through an acid-base interaction. Unlike VOPO4 . 2H(2)O, I does not exhibit reductive intercalation reactivity.
Resumo:
The surface properties of coal-pyrite play a major role in determining its separation from coal in processes such as flotation. The solution pH is an important parameter in determining the surface properties of both coal and coal-pyrite such as surface free energy and zeta-potential. In the present investigation, the effect of pH on the surface free energy of pyrites from different sources was studied. The surface free energy of solids is made up of two components, i.e. the dispersive surface free energy and the acid-base interaction energy. Various methods have been used by previous researchers to evaluate these two components for different solids. In the present study, a new approach was developed and used to study the surface free energy of pyrite surfaces. Results indicate that the dispersion surface free energy of various pyrites is independent of pH while the acid-base interaction energy is strongly dependent on the pH. The acid-base interaction energy is different for each pyrite sample and also the change with pH varies with the type of pyrite. Coal-pyrite was found to be more hydrophobic than ore-pyrite which may be attributed to the presence of carbon in coal-pyrites. The acid-base interaction energy varied little with pH for coal pyrites than ore-pyrite. Comparison of acid-base interaction energy with zeta-potential measurements shows a good correlation between the minimum in acid-base interaction energy and the pHpzc.
Resumo:
The application of Bacillus subtilis as a flocculant for fine coal has been reported here. Zeta-potential measurements showed that both the coal and bacteria had similar surface charge as a function of pH. Surface free energy calculations showed that the coal was hydrophobic while the bacterium was hydrophilic. The adhesion of the bacteria to coal and subsequent settling was studied in detail. Adhesion of bacteria to coal surface and subsequent settling of coal was found to be quick. Both adhesion and settling were found to be independent of pH, which makes the process very attractive for field applications. The presence of an electrolyte along with the bacterium was found to not only enhance adhesion of bacteria, but also produce a clear supernatant. Further, the settled fraction was more compact than with bacteria alone. Interaction energy calculations using the extended DLVO theory showed that the electrical forces along with the acid-base interaction energy play a dominant role in the lower pH range. Above pH 7, the acid-base interaction energy is the predominant attractive force and is sufficient enough to overcome the repulsive forces due to electrical charges to brine about adhesion and thus settling of fine coal. With increase in electrolyte concentration, the change in total interaction energy with pH is minimal which probably leads to better adhesion and hence settling. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Total synthesis of the polyhydroxy caprolactam amide natural product, bengamide E, is accomplished starting from tartaric acid. Key reactions in the synthesis include desymmetrization of the bis(dimethylamide) unit of tartaric acid, Zn(BH4)2-mediated anti-selective reduction, and a HornerWadsworthEmmons olefination.
Resumo:
N-Decanoyl-L-alanine (DA) was mixed with either colorless 4,4-bipyridine (BP) or various derivatives such as chromogenic oligo(p-phenylenevinylene) (OPV) functionalized with isomeric pyridine termini in specific molar ratios. This mixtures form salt-type gels in a water/ethanol (2:1, v/v) mixture. The gelation properties of these two-component mixtures could be modulated by variation of the position of the N atom of the end pyridyl groups in OPVs. The presence of acid-base interactions in the self-assembly of these two-component systems leading to gelation was probed in detail by using stoichiometry-dependent UV/Vis and FTIR spectroscopy. Furthermore, temperature-dependent UV/Vis and fluorescence spectroscopy clearly demonstrated a J-type aggregation mode of these gelator molecules during the sol-to-gel transition process. Morphological features and the arrangement of the molecules in the gels were examined by using scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray diffraction (XRD) techniques. Calculation of the length of each molecular system by energy minimization in its extended conformation and comparison with the XRD patterns revealed that this class of gelator molecules adopts lamellar organizations. Rheological properties of these two-component systems provided clear evidence that the flow behavior could be modulated by varying the acid/amine ratio. Polarized optical microscopy (POM), differential scanning calorimetry (DSC), and XRD results revealed that the solid-phase behavior of such two-component mixtures (acid/base=2:1) varied significantly upon changing the proton-acceptor part from BP to OPV. Interestingly, the XRD pattern of these acid/base mixtures after annealing at their associated isotropic temperature was significantly different from that of their xerogels.
Resumo:
Thiolases are essential CoA-dependent enzymes in lipid metabolism. In the present study we report the crystal structures of trypanosomal and leishmanial SCP2 (sterol carrier protein, type-2)-thiolases. Trypanosomatidae cause various widespread devastating (sub)-tropical diseases, for which adequate treatment is lacking. The structures reveal the unique geometry of the active site of this poorly characterized subfamily of thiolases. The key catalytic residues of the classical thiolases are two cysteine residues, functioning as a nucleophile and an acid/base respectively. The latter cysteine residue is part of a CxG motif. Interestingly, this cysteine residue is not conserved in SCP2-thiolases. The structural comparisons now show that in SCP2-thiolases the catalytic acid/base is provided by the cysteine residue of the HDCF motif, which is unique for this thiolase subfamily. This HDCF cysteine residue is spatially equivalent to the CxG cysteine residue of classical thiolases. The HDCF cysteine residue is activated for acid/base catalysis by two main chain NH-atoms, instead of two water molecules, as present in the CxG active site. The structural results have been complemented with enzyme activity data, confirming the importance of the HDCF cysteine residue for catalysis. The data obtained suggest that these trypanosomatid SCP2-thiolases are biosynthetic thiolases. These findings provide promise for drug discovery as biosynthetic thiolases catalyse the first step of the sterol biosynthesis pathway that is essential in several of these parasites.
Resumo:
We report the design and synthesis of an amide functionalized microporous organic polymer (Am-MOP) prepared from trimesic acid and p-phenylenediamine using thionyl chloride as a reagent. Polar amide (CONH) functional groups act as a linking unit between the node and spacer and constitute the pore wall of the continuous polymeric network. The strong covalent bonds between the building blocks (trimesic acid and p-phenylenediamine) through amide bond linkages provide high thermal and chemical stability to Am-MOP. The presence of a highly polar pore surface allows selective CO2 uptake at 195 K over other gases such as N-2, Ar, and O-2. The CO2 molecule interacts with amide functional groups via Lewis acid base type interactions as demonstrated through DFT calculations. Furthermore, for the first time Am-MOP with basic functional groups has been exploited for the Knoevenagel condensation reaction between aldehydes and active methylene compounds. Availability of a large number of catalytic sites per volume and confined microporosity gives enhanced catalytic efficiency and high selectivity for small substrate molecules.
Resumo:
The enantiospecific total synthesis of 14-membered macrolactone Sch 725674 was accomplished from tartaric acid. Key reactions in the synthesis include the Ley's dithiaketalization of an alkynone derived from the bis-Weinreb amide of tartaric acid, Boord olefination, and ring-closing metathesis of an acrylate ester.
Resumo:
Two-component super-hydrogelation triggered by the acid-base interaction of a L-histidine appended pyrenyl derivative (PyHis) and phthalic acid (PA) was reported. The use of isomeric isophthalic or terephthalic acid or other comparable acids in place of PA does not lead to salt formation and therefore hydrogelation is not observed. Excimer formation of the pyrenyl unit has not been detected although the PyHis : PA = 1: 1 system undergoes extensive self-assembly in aqueous solution. The synergistic effect of intermolecular H-bonding forces, pi-pi stacking, electrostatic interactions, etc. is found to be responsible for robust hydrogel formation. Development of chiral supramotecular assemblies has been verified through circular dichroism spectroscopy. Morphological investigations involving the PyHis : PA = 1: 1 system show vesicular nano-structures with a definite bilayer width at relatively low concentrations. The latter fuses to construct coiled-coil left-handed helical fibers upon increase in the concentrations of the gelators. The intertwining of the resultant helical fibers eventually results in hydrogel formation. The probable bilayer packing in the self-assembled structures has been probed using X-ray diffraction (XRD) studies and lanthanide sensitization, which suggests that the polar imidazolium hydrogen phthalate unit of the gelator forms the head group and faces the hydrophilic water environment while the hydrophobic pyrenyl units sit inside the hydrophobic core of the bilayer. The hydrogel exhibits multi-stimuli responsiveness including thixotropic behavior. In addition, shape-persistent as well as rapid self-healing behaviour of the hydrogel was established. Furthermore load-bearing characteristics of the hydrogel have also been demonstrated.
Resumo:
Cocrystallization of pyridoxine (vitamin B6) with several biologically important molecules was undertaken with the intent of successfully designing various hydrogen bonded adducts such as salts, cocrystals, and eutectics. Pyridoxine formed eutectics with isoniazid (an antitubercular drug) and nicotinic acid (vitamin B3) and molecular salts with para-aminobenzoic acid (a bioactive) and saccharin (an artificial sweetener), respectively, in accordance to our design strategy. A salt cocrystal, a precisely conjugate acid-base cocrystal, was obtained for the pyridoxine-para-nitrobenzoic acid combination. The role of supramolecular affinity of hydrogen bonding functional groups and Delta pK(a) differences leading to the formation of above diverse adducts was discussed. This study underpins the need for full-fledged supramolecular compatibility studies of multivitamin/drug combinations toward the development of optimal and/or synergistic combination formulations.
Resumo:
Changes in the protonation and deprotonation of amino acid residues in proteins play a key role in many biological processes and pathways. Here, we report calculations of the free-energy profile for the protonation deprotonation reaction of the 20 canonical alpha amino acids in aqueous solutions using ab initio Car-Parrinello molecular dynamics simulations coupled with metad-ynamics sampling. We show here that the calculated change in free energy of the dissociation reaction provides estimates of the multiple pK(a) values of the amino acids that are in good agreement with experiment. We use the bond-length-dependent number of the protons coordinated to the hydroxyl oxygen of the carboxylic and the amine groups as the collective variables to explore the free-energy profiles of the Bronsted acid-base chemistry of amino acids in aqueous solutions. We ensure that the amino acid undergoing dissociation is solvated by at least three hydrations shells with all water molecules included in the simulations. The method works equally well for amino acids with neutral, acidic and basic side chains and provides estimates of the multiple pK(a) values with a mean relative error, with respect to experimental results, of 0.2 pK(a) units.
Resumo:
Low temperature Raman spectroscopic measurements on silver nitroprusside (AgNP), Ag-2Fe(CN)(5)NO] powders display reversible features of a partially converted metastable state. The results are compared with similarly observed metastable state in case of sodium nitroprusside (NaNP) and the differences have been discussed in terms of possible resistance to metastable state formation offered by silver atoms on the basis of hard soft acid base (HSAB) theory.
Resumo:
Iron(III) complexes, (NHEt3)[Fe(III)(sal-met)(2)] and (NHEt3)[Fe(III)(sal-phe)(2)], of amino acid Schiffbase ligands, viz., N-salicylidene-L-methionine and N-salicylidene L-phenylalanine, have been prepared and their binding to bovine serum albumin (BSA) and photo-induced BSA cleavage activity have been investigated. The complexes are structurally characterized by single crystal X-ray crystallography. The crystal Structures of the discrete mononuclear rnonoanionic complexes show FeN2O4 octahedral coordination geometry in which the tridentate dianionic amino acid Schiff base ligand binds through phenolate and carboxylate oxygen and imine nitrogen atoms. The imine nitrogen atoms are trans to each other. The Fe-O and Fe-N bond distances range between 1.9 and 2.1 angstrom. The sal-met complex has two pendant thiomethyl groups. The high-spin iron(III) complexes (mu(eff) similar to 5.9 mu(B)) exhibit quasi-reversible Fe(III)/Fe(II) redox process near -0.6 V vs. SCE in water. These complexes display a visible electronic hand near 480 nm in tris-HCl buffer assignable to the phenolate-to-iron(III) charge transfer transition. The water soluble complexes bind to BSA giving binding constant values of similar to 10(5) M-1. The Complexes show non-specific oxidative cleavage of BSA protein on photo-irradiation with UV-A light of 365 nm.
Resumo:
New lanthanide complexes of salicylaldehyde-Schiff bases with salicyloyl hydrazide and anthranilic acid, were synthesized by a novel method consisting of refluxing the mixtures of Schiff base ligands and lanthanide trichloroacetate in acetone. Solid complexes of formulae Ln(SHSASB)s*2Hz0 and Ln2(AASASB)s*2Hz0 where Ln = La-Yb and Y, were isolated. Proton NMR and IR spectra for the complexes reveal the bidentate binding of both the Schiff base ligands to the lanthanide ion. Electronic spectra along with the conductance data for the complexes indicate a coordination number of six for the lanthanide ion in the complexes of both the Schiff bases.
Resumo:
Antipyrine is a well known ligand for lanthanides (I). A forage through the organic literature of pyrazolones reveals that the 4-position of antipyrine is amenable to a wide variety of organic reactions. It should thus be possible to introduce suitable functional groups at this position and design new multidentate ligands for metal ions. It is also found that the coordination chemistry of lanthanides is much less well developed and far fewer ligands have been used for complexation with lanthanide ions compared to that of the d-transition metal ions. Keeping these points in view we have reported earlier, complexes of lanthanides with a bidentate ligand N,N-diethyl-antipyrine-4-carboxamide (2). In this communication we report the synthesis of two new ligands from Schiff base condensation of antipyraldehyde and the hydrazides of acetic and benzoic acids and the complexes formed by these hydrazones with lanthanide perchlorates.