92 resultados para 207-1257
Resumo:
An adaptive drug delivery design is presented in this paper using neural networks for effective treatment of infectious diseases. The generic mathematical model used describes the coupled evolution of concentration of pathogens, plasma cells, antibodies and a numerical value that indicates the relative characteristic of a damaged organ due to the disease under the influence of external drugs. From a system theoretic point of view, the external drugs can be interpreted as control inputs, which can be designed based on control theoretic concepts. In this study, assuming a set of nominal parameters in the mathematical model, first a nonlinear controller (drug administration) is designed based on the principle of dynamic inversion. This nominal drug administration plan was found to be effective in curing "nominal model patients" (patients whose immunological dynamics conform to the mathematical model used for the control design exactly. However, it was found to be ineffective in curing "realistic model patients" (patients whose immunological dynamics may have off-nominal parameter values and possibly unwanted inputs) in general. Hence, to make the drug delivery dosage design more effective for realistic model patients, a model-following adaptive control design is carried out next by taking the help of neural networks, that are trained online. Simulation studies indicate that the adaptive controller proposed in this paper holds promise in killing the invading pathogens and healing the damaged organ even in the presence of parameter uncertainties and continued pathogen attack. Note that the computational requirements for computing the control are very minimal and all associated computations (including the training of neural networks) can be carried out online. However it assumes that the required diagnosis process can be carried out at a sufficient faster rate so that all the states are available for control computation.
Resumo:
The coupled wavenumbers of a fluid-filled flexible cylindrical shell vibrating in the axisymmetric mode are studied. The coupled dispersion equation of the system is rewritten in the form of the uncoupled dispersion equation of the structure and the acoustic fluid, with an added fluid-loading term involving a parameter e due to the coupling. Using the smallness of Poisson's ratio (v), a double-asymptotic expansion involving e and v 2 is substituted in this equation. Analytical expressions are derived for the coupled wavenumbers (for large and small values of E). Different asymptotic expansions are used for different frequency ranges with continuous transitions occurring between them. The wavenumber solutions are continuously tracked as e varies from small to large values. A general trend observed is that a given wavenumber branch transits from a rigidwalled solution to a pressure-release solution with increasing E. Also, it is found that at any frequency where two wavenumbers intersect in the uncoupled analysis, there is no more an intersection in the coupled case, but a gap is created at that frequency. Only the axisymmetric mode is considered. However, the method can be extended to the higher order modes.
Resumo:
The importance of seepage in the design of channels is discussed. Experimental investigations reveal that seepage, either in the downward direction (suction) or in the upward direction (injection), can significantly change the resistance as well as the mobility of the sand-bed particles. A resistance equation relating 'particle Reynolds number' and 'shear Reynolds number' under seepage conditions is developed for plane sediment beds. Finally, a detailed design procedure of the plane sediment beds affected by seepage is presented.
Resumo:
α-Manganese dioxide is synthesized in a microemulsion medium by a redox reaction between KMnO4 and MnSO4 in presence of sodium dodecyl sulphate as a surface active agent. The morphology of MnO2 resembles nanopetals, which are spread parallel to the field. The material is further characterized by powder X-ray diffraction, energy dispersive analysis of X-ray, and Brunauer–Emmett–Teller surface area. Supercapacitance property of α-MnO2 nanopetals is studied by cyclic voltammetry and galvanostatic charge–discharge cycling. High values of specific capacitance are obtained.
Resumo:
The enantioselective syntheses of diquinane and cis, anti, cis-linear triquinanes, starting from the readily available (S)-campholenaldehyde, employing an intramolecular rhodium carbenoid CH insertion reaction, are described. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Purpose: Testis specific heat-shock protein 70-2 (HSP70-2), a member of HSP70 chaperone family, is essential for the growth of spermatocytes and cancer cells. We investigated the association of HSP70-2 expression with clinical behaviour and progression of urothelial carcinoma of bladder. Experimental design: We assessed the HSP70-2 expression by RT-PCR and HSP70-2 protein expression by immunofluorescence, flow cytometry, immunohistochemistry and Western blotting in urothelial carcinoma patient specimens and HTB-1, UMUC-3, HTB-9, HTB-2 and normal human urothelial cell lines. Further, to investigate the role of HSP70-2 in bladder tumour development, HSP70-2 was silenced in the high-grade invasive HTB-1 and UMUC-3 cells. The malignant properties of urothelial carcinoma cells were examined using colony formation, migration assay, invasion assay in vitro and tumour growth in vivo. Results: Our RT-PCR analysis and immunohistochemistry analysis revealed that HSP70-2 was expressed in both moderate to well-differentiated and high-grade invasive urothelial carcinoma cell lines studied and not in normal human urothelial cells. In consistence with these results, HSP70-2 expression was also observed in superficially invasive (70%) and muscle-invasive (90%) patient's tumours. Furthermore, HSP70-2 knockdown significantly suppressed cellular motility and invasion ability. An in vivo xenograft study showed that inhibition of HSP70-2 significantly suppressed tumour growth. Conclusions: In conclusion, our data suggest that the HSP70-2 expression is associated with early spread and progression of urothelial carcinoma of bladder cancer and that HSP70-2 can be the potential therapeutic target for bladder urothelial carcinoma. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
A ligand series obtained from V = O stretching frequencies for different monomeric complexes of oxovanadium(IV) is shown to parallel the nephelauxetic series. The ligand series obtained from streching frequencies of other systems are also shown to compare well with the nephelauxetic series rather than the spectrochemical series.
Resumo:
The dipole moment of chloral hydrate is 2·07 D and 2·65 D at 35° in benzene and dioxane solutions respectively. Bromal hydrate has a moment of 2·56 D in benzene solution. The moments observed can reasonably be accounted for on the scheme of Smith et al. and the results have been discussed in terms of the possible structures of these molecules.
Resumo:
With a view to understanding the mechanism of the formation of 6-methoxy-2,2-(tetrachloro--phenylenedioxy)-naphthalen-1 (2H)-one (IIIa) in the reaction of 6-methoxy-1-tetralone (Ia) with tetrachloro-1,2-benzoquinone (II), the reaction of (II) with various tetralones and naphthols has been studied. Reaction with either α-tetralone or α-naphthol gives 2,2-(tetrachloro-o-phenylenedioxy)naphthalen-1 (2H)-one (IIIb), whereas reaction with either β-tetralone or β-naphthol gives a mixture of (IIIb) and ,1-(tetrachloro-o-phenylenedioxy)-naphthalen-2 (1H)-one (IX), with the former predominating. Further, reactions of (II) with 7-methoxy-3,4-dihydrophenanthren- 1 (2H)-one and m-methoxyphenol gave respectively 7-methoxy- ,2-(tetrachloro-o- phenylenedioxy)phenanthren-1 (2H)-one (VII) and 3-methoxy-6,6-(tetrachloro-o- phenylenedioxy)cyclohexa-2,4-dien-1-one (VIII). Structures of all these compounds have been proved on the basis of i.r. and n.m.r. data. The pathway to the formation of the condensates (III) is discussed.
Resumo:
The concept of a fully-developed flow based on the hypothesis of selective memory is here applied to general wall-jet type flows. In the presence of a (constant) external stream, the free-stream velocity and the jet momentum flux are taken to be the chief quantities governing the development of the wall jet: two additional nondimensional parameters, representing a momentum flux Reynolds number and the relative momentum defect in the initial boundary layer, are shown to have only a secondary effect on the fully-developed flow. The standard correlations so determined are also found to predict quite well the flow development in Gartshore and Newman's experiments on wall jets in adverse pressure gradients; possible reasons for this somewhat surprising result are discussed. Finally it is shown, by application to the still-air case, that the parameters discovered in incompressible flow are, with appropriate but straightforward modification, successful in describing compressible wall jets also.
Resumo:
The crystal structure of the complex La(NO3)3.4(CH3)2SO has been solved by the heavy-atom method. The complex crystallizes in the monoclinic space group C2/e with four formula units in a unit cell of dimensions a= 14.94, b= 11.04, c= 15.54 A and fl= 109 ° 10'. The parameters have been refined by threedimensional least-squares procedures with anisotropic thermal parameters for all atoms except hydrogen. The final R index for 1257 observed reflexions is 0.094. The La 3 + ion is coordinated by ten oxygen atoms with La-O distances varying from 2.47 to 2.71 A. The geometry of the coordination polyhedron is described.
Resumo:
BacilliformOryctes baculovirus particles have been visualized in electron micrographs of midgut sections from virus infectedOryctes rhinoceros beetles. Morphologically the Indian isolate (Oryctes baculovirus, KI) resembled the previously reportedOryctes baculovirus, isolate PV505. The constituent proteins of baculovirus KI have been analysed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and by Western blots using polyclonal antibodies raised against the complete viral particles, as probes. A total of forty eight viral proteins have been identified. Fourteen viral proteins were located on the viral envelope. Among the proteins constituting the nucleocapsid, three were located internally within the capsid. A 23.5 kDa protein was tightly associated with viral DNA in the nucleocapsid core. Two envelope and seven capsid proteins stained positive for glycosylation. Comparison between the viral proteins of KI and PV505 revealed differences in SDS-PAGE profiles and glycosylation patterns. Immunoblotting of KI and PV505 proteins with anti KI antiserum demonstrated antigenic differences between the two viral isolates.
Resumo:
We present observations of radio recombination lines (RRL) from the starburst galaxy Arp 220 at 8.1 GHz (H92 alpha) and 1.4 GHz (H167 alpha and H165 alpha) and at 84 GHz (H42 alpha), 96 GHz (H40 alpha) and 207 GHz (H31 alpha) using the Very Large Array and the IRAM 30 m telescope, respectively. RRLs were detected at all the frequencies except 1.4 GHz, where a sensitive upper limit was obtained. We also present continuum flux measurements at these frequencies as well as at 327 MHz made with the VLA. The continuum spectrum, which has a spectral index alpha similar to -0.6 (S-nu proportional to nu(alpha)) between 5 and 10 GHz, shows a break near 1.5 GHz, a prominent turnover below 500 MHz, and a flatter spectral index above 50 GHz. We show that a model with three components of ionized gas with different densities and area covering factors can consistently explain both RRL and continuum data. The total mass of ionized gas in the three components is 3.2 x 10(7) M., requiring 3 x 10(5) O5 stars with a total Lyman continuum production rate N-Lyc similar to 1.3 x 10(55) photons s(-1). The ratio of the expected to observed Br alpha and Br gamma fluxes implies a dust extinction A(V) similar to 45 mag. The derived Lyman continuum photon production rate implies a continuous star formation rate (SFR) averaged over the lifetime of OB stars of similar to 240 M yr(-1). The Lyman continuum photon Production rate of similar to 3% associated with the high-density H II regions implies a similar SFR at recent epochs (t < 10(5) yr). An alternative model of high-density gas, which cannot be excluded on the basis of the available data, predicts 10 times higher SFR at recent epochs. If confirmed, this model implies that star formation in Arp 220 consists of multiple starbursts of very high SFR (few times 10(3) M. yr(-1)) and short duration (similar to 10(5) yr). The similarity of IR excess, L-IR/L-Ly alpha similar to 24, in Arp 220 to values observed in starburst galaxies shows that most of the high luminosity of Arp 220 is due to the ongoing starburst rather than to a hidden active galactic nucleus (AGN). A comparison of the IR excesses in Arp 220, the Galaxy, and M33 indicates that the starburst in Arp 220 has an initial mass function that is similar to that in normal galaxies and has a duration longer than 107 yr. If there was no infall of gas during this period, then the star formation efficiency (SFE) in Arp 220 is similar to 50%. The high SFR and SFE in Arp 220 is consistent with their known dependences on mass and density of gas in star-forming regions of normal galaxies.
Resumo:
Thermal reactivities of ammonium perchlorate (AP) pressed at 1500 kg cm–2 for various dwell times ranging from 0 to 45 min have been investigated. Reactivity of AP is observed to (a) increase with increase of dwell time up to 15 min and (b) decrease for the compacts obtained at higher dwell times. X-ray diffraction profiles of the compacts indicated a broadening up to 15 min dwell time and a narrowing thereafter. The increase in the reactivity has been attributed to the increase in the number of gross imperfections and plastic deformation of particles. The decrease in the reactivity is explained in terms of recrystallization after plastic deformation. Local heating is shown to exist during compaction though its macroscopic effect is insignificant during compaction of AP.