110 resultados para 13627-011
Resumo:
This work reports the synthesis of a wide range of ferrocenyl-amino acids and other derivatives in excellent yield. Diverse amino acid containing azides were synthesized and ligated to ferrocene employing click reaction to access ferrocenyl amino acids. Chiral alcohols, esters, diols, amines containing azido group were tagged to ferrocene via click reaction to generate ferrocene derived chiral derivatives. A novel strategy for direct incorporation of ferrocene into a peptide and a new route to 1, 1′disubstituted ferrocene amino acid derivative are reported.
Resumo:
A detailed mechanics based model is developed to analyze the problem of structural instability in slender aerospace vehicles. Coupling among the rigid-body modes, the longitudinal vibrational modes and the transverse vibrational modes due to asymmetric lifting-body cross-section are considered. The model also incorporates the effects of aerodynamic pressure and the propulsive thrust of the vehicle. The model is one-dimensional, and it can be employed to idealized slender vehicles with complex shapes. Condition under which a flexible body with internal stress waves behaves like a perfect rigid body is derived. Two methods are developed for finite element discretization of the system: (1) A time-frequency Fourier spectral finite element method and (2) h-p finite element method. Numerical results using the above methods are presented in Part II of this paper. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
This paper makes explicit the relation between relative part position and kinematic freedom of the parts which is implicitly available in the literature. An extensive set of representative papers in the areas of assembly and kinematic modelling is reviewed to specifically identify how the ideas in the two areas are related and influencing the development of each other. The papers are categorised by the approaches followed in the specification, representation, and solution of the part relations. It is observed that the extent of the part geometry is not respected in modelling schemes and as a result, the causal flow of events (proximity–contact–mobility) during the assembling process is not realised in the existing modelling paradigms, which are focusing on either the relative positioning problem or the relative motion problem. Though an assembly is a static description of part configuration, achievement of this configuration requires availability of relative motion for bringing parts together during the assembly process. On the other hand, the kinematic freedom of a part depends on the nature of contacting regions with other parts in its static configuration. These two problems are thus related through the contact geometry. The chronology of the approaches that significantly contributed to the development of the subject is also included in the paper.
Resumo:
Sintered, polycrystalline ZnO ceramics with copper as the only additive exhibit highly nonlinear current‐voltage characteristics. Increasing nonlinearity index (α=4–45) with Cu concentration of 0.01–1 mol % is also variable with respect to ceramic processing methods. Incorporation of Cu in the ZnO lattice is indicated from the electron probe microanalysis and the photoluminescence spectra. Cu acceptors are compensated by holes in the grain boundary layers, whereas the concentration of intrinsic donors is higher in the grain interior. The presence of positive charges leads to thinning of the depletion region, resulting in nonlinear characteristics.
Resumo:
Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the "high energy" character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes.
Resumo:
Pyrophosphate prototypes such as methyl triphosphate and methyl diphosphate molecules in their different protonation states have been investigated at high levels of quantum chemical calculations. The optimized geometries, the thermochemistry of the hydrolysis and the molecular orbitals contributing to the high energy of these compounds have been analyzed. These investigations provide insights into the ``high energy'' character of ATP molecule. Further, the dependence of vibrational frequencies on the number of phosphate groups and the charged states has also been presented. These results can aid the interpretation of spectra obtained by experiments on complexes containing pyrophosphate prototypes. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
A method for total risk analysis of embankment dams under earthquake conditions is discussed and applied to the selected embankment dams, i.e., Chang, Tapar, Rudramata, and Kaswati located in the Kachchh region of Gujarat, India, to obtain the seismic hazard rating of the dam site and the risk rating of the structures. Based on the results of the total risk analysis of the dams, coupled non-linear dynamic numerical analyses of the dam sections are performed using acceleration time history record of the Bhuj (India) earthquake as well as five other major earthquakes recorded worldwide. The objective of doing so is to perform the numerical analysis of the dams for the range of amplitude, frequency content and time duration of input motions. The deformations calculated from the numerical analyses are also compared with other approaches available in literature, viz, Makdisi and Seed (1978) approach, Jansen's approach (1990), Swaisgood's method (1995), Bureau's method (1997). Singh et al. approach (2007), and Saygili and Rathje approach (2008) and the results are utilized to foresee the stability of dams in future earthquake scenario. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
C2H2N203.H20, Mr= 120.07, monoclinic,P21/c, a= 5.011 (1), b= 11.796(2), c= 7.689 (2)A,fl= 95.22 (2) ° , V= 452.61 A 3, Z= 4, Dx= 1.76, D m = 1.75 gcm -3, /].(Cu Ks) = 1.5418 A, g = 14-0 cm -l,F(000) = 248, T = 293 K, crystal quality was poor and the final R =0.107, wR =0.090 for 881 observed reflections. The compound is derived from a novel form of the monopropellant oxalohydroxamic acid. The two exocyclic C-O bond lengths of 1.240 (3) and 1.228 (4)A indicate double bonds. The C-N bond lengths of 1.334 (4), 1.390 (4) and 1.359 (4) A are characteristic of the amide bond. The N atom covalently bonded to the two carbonyl C atoms acts as a proton donor in an intermolecular hydrogen bond to the ring O atom: N1...O3i = 2.854 ]k (i =x-- 1,y, z), H...O = 2.15 A, N-H...O = 159 °.
Resumo:
The nanoindentation technique has been employed to relate the mechanical properties of saccharin single crystals with their internal structure. Indentations were performed on (100) and (011) faces to assess the mechanical anisotropy. The load-displacement (P-h) curves indicate significant differences in the nature of the plastic deformation on the two faces. The P-h curves obtained on the (011) plane are smooth, reflecting homogeneous plasticity. However, displacement bursts (pop-ins) are observed in the P-h curves obtained on the (100) plane suggesting a discrete deformation mechanism. Marginal differences exist in the hardness and modulus on the two faces that may, in part, be rationalized, although one notes that saccharin has a largely three-dimensional close-packed structure. The structural origins of the fundamentally different deformation mechanisms on (100) and (011) are discussed in terms of the dimensionality of the hydrogen bonding networks. Down the (100) planes, the saccharin dimers are stacked and are stabilized by nonspecific van der Wants interactions mostly between aromatic rings. However, down the (011) planes, the molecules are stabilized by more directional and cross-linked C-H ... O hydrogen bonds. This anisotropy in crystal packing and interactions is reflected in the mechanical behavior on these faces. The displacements associated with the pop-ins were found to he integral multiples oldie molecule separation distances. Nanoindentation offers an opportunity to compare experimentally, and in a quantitative way, the various intermolecular interactions that fire present in a molecular crystal.
Resumo:
We discuss the results of an extensive mean-field investigation of the half-filled Hubbard model on a triangular lattice at zero temperature. At intermediate U we find a first-order metal-insulator transition from an incommensurate spiral magnetic metal to a semiconducting state with a commensurate linear spin density wave ordering stabilized by the competition between the kinetic energy and the frustrated nature of the magnetic interaction. At large U the ground state is that of a classical triangular antiferromagnet within our approximation. In the incommensurate spiral metallic phase the Fermi surface has parts in which the wave function renormalization Z is extremely small. The evolution of the Fermi surface and the broadening of the quasi-particle band along with the variation of the plasma frequency and a charge stiffness constant with U/t are discussed.
Resumo:
The chemical potentials of SrO in two-phase fields (TiO2 + SrTiO3) (SrTiO3 + Sr4Ti3O10) (Sr4Ti3O10 + Sr3Ti2O7) and (Sr3Ti2O7 + Sr2TiO4) of the pseudo-binary system (SrO + TiO2) have been measured in the temperature range (900 to 1250) K relative to pure SrO as the reference state using solid-state galvanic cells incorporating single crystal SrF2 as the electrolyte The cells were operated under pure oxygen at ambient pressure The standard Gibbs free energies of formation of strontium titanates SrTiO3 Sr4Ti3O10 Sr3Ti2O7 and Sr2TiO4 from their component binary oxides were derived from the reversible electromotive force (EMF) of the cells For the formation of the four compounds from their component oxides TiO2 with rutile structure and SrO the standard Gibbs free energy changes are given by Delta G((ox))(SrTiO3) +/- 89/(J mol(-1)) = -121878 + 3 881(T/K) Delta G((ox))(Sr4Ti3O10) +/- 284/(J mol(-1)) = -409197 + 14 749(T/K) Delta G((ox))(Sr3Ti2O7) +/- 190/(J mol(-1)) = -285827 + 10 022(T/K) Delta G((ox))(Sr2TiO4) +/- 110/(J mol(-1))= -159385 + 3 770(T/K) The reference state for solid TiO2 is the rutile form The results of this study are in good agreement with Gibbs free energy of formation data reported in the literature for SrTiO3 but differ significantly with data for Sr4Ti3O10 For Si3Ti2O7 and Si2TiO4 experimental measurements are not available in the literature for direct comparison with the results obtained in this study (C) 2010 Elsevier Ltd All rights reserved
Resumo:
Potassium titanyl phosphate (KTP) is a relatively new nonlinear optical material with excellent combination of physical properties. This paper presents the combined etching and X-ray topographic studies carried out on KTP crystals with a view to characterizing their defects. KTP crystals employed in this investigation were grown from flux. Optical microscopic study of habit faces revealed growth layers and growth hillocks on (100) and (011) faces respectively. Etching of (011) habit faces proved that growth hillocks corresponded to the emergence point of dislocation out crops on these faces. The suitability of the new etchant to reveal dislocation was confirmed by etching the matched pairs obtained by cleaving. The defects present in the crystal were also studied by X-ray topography. The defect configuration in these crystals is characteristic of crystals grown from solution. The dislocations arc predominantly linear with their origin either at the nucleation centre or inclusions. In general, grown crystals were found to have low dislocation density and often large volumes of crystals free from dislocation could be obtained.
Resumo:
The protective effect of bacteriophage was assessed against experimental Staphylococcus aureus lethal bacteremia in streptozotocin (STZ) induced-diabetic and non-diabetic mice. Intraperitoneal administrations of S. aureus (RCS21) of 2 x 10(8) CFU caused lethal bacteremia in both diabetic and non-diabetic mice. A single administration of a newly isolated lytic phage strain (GRCS) significantly protected diabetic and nondiabetic mice from lethal bacteremia (survival rate 90% and 100% for diabetic and non-diabetic bacteremic groups versus 0% for saline-treated groups). Comparison of phage therapy to oxacillin treatment showed a significant decrease in RCS21 of 5 and 3 log units in diabetic and nondiabetic bacteremic mice, respectively. The same protection efficiency of phage GRCS was attained even when the treatment was delayed up to 4 h in both diabetic and non-diabetic bacteremic mice. Inoculation of mice with a high dose (10(10) PFU) of phage GRCS alone produced no adverse effects attributable to the phage per se. These results suggest that phages could constitute valuable prophylaxis against S. aureus infections, especially in immunocompromised patients. (C) 2010 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
The 1:1 and 1:2 cooper(II) complexes with the tridentate compound bis(benzimidazol-2-ylmethyl)amine (L(1)) and its benzimidazole (L(2)) and amine (L(3)) N-methyl-substituted derivatives have been prepared and their spectroscopic properties studied. While the 1:1 complexes are of the type CuLX(2) nH(2)O (X = C/O-4(-), NO3-, Cl- or Br-), the 1:2 complexes are of the type CuL(2) (ClO4)(2) nH(2)O (L = L(1) or L(3), n = 0-4). In all these complexes L acts as a tridentate ligand with the amine nitrogen and both the benzimidazole nitrogens co-ordinating to Cu-II. The complex [CuL(2)(1)][ClO4](2) 2H(2)O crystallises in the monoclinic space group P2(1)/c with a = 9.828(2), b = 9.546(2) and c = 19.906(2) Angstrom and beta = 95.71(1)degrees, for Z = 2. The R value is 0.0635 for 2180 significant reflections. The copper(II) ion has an elongated octahedral geometry with four equatorial benzimidazole and two long-distance axial amine N donors. The Cu-N-bzim and Cu-N-amine distances are 2.011(4) and 2.597(6) Angstrom respectively. Factors favouring facial co-ordination to tridentate ligands are discussed. The 1:1 complexes involve meridonal co-ordination of the ligands, with square-based geometry as revealed by ligand-field and EPR spectral properties. The NMe substitution as in CuL(3)(ClO4)(2) confers low V ($) over tilde$$(max) and high E(1/2) for the cu(II)-Cu-I couple. Most of the 1:1 complexes are less reversible but exhibit E(1/2) values more positive than those of the corresponding 1:2 complexes.
Resumo:
In this paper, we propose the first approximation for thickness of Quaternary sediment and late Quaternary early Tertiary topography for the part of lower reaches of Narmada valley in a systematic way using the shallow seismic method, that records both horizontal and vertical components of the microtremor (ambient noise) caused by natural processes. The measurements of microtremors were carried out at 31 sites spaced at a grid interval of 5 km s using Lennartz seismometer (5 s period) and City shark-II data acquisition system. The signals recorded were analysed for horizontal to the vertical (H/V) spectral ratio using GEOPSY software. For the present study, we concentrate on frequency range between 0.2 Hz and 10 Hz. The thickness of unconsolidated sediments at various sites is calculated based on non-linear regression equations proposed by Ibs-von Seht and Wohlenberg (1999) and Parolai et al. (2002). The estimated thickness is used to plot digital elevation model and cross profiles correlating with geomorphology and geology of the study area. (C) 2011 Elsevier Ltd. All rights reserved.