171 resultados para 123-765C
Resumo:
Redundant DNA can buffer sequence dependent structural deviations from an ideal double helix. Buffering serves a mechanistic function by reducing extraneous conformational effects which could interfere with readout or which would impose energetic constraints on evolution. It also serves an evolutionary function by allowing for gradual variations in conformation-dependent regulation of gene expression. Such gradualism is critical for the rate of evolution. The buffer structure concept provides a new interpretation for repetitive DNA and for exons and introns.
Resumo:
ESR and optical studies of phosphomolybdate and phosphotungstate glasses are discussed. Both the ESR and optical results indicate that molybdenum or tungsten ions are present in distorted octahedral environments in these glasses. In addition, ESR spectra of Mo5+ and W5+ ions show that the d electrons are localized on molybdenum and tungsten sites respectively. The variation of gperpendicular and gshort parallel values has been examined using appropriate structural models of these glasses.
Resumo:
We report here development and characterization of 48 novel microsatellite markers for Ropalidia marginata, a tropical, primitively eusocial polistine wasp from peninsular India. Thirty-two microsatellites showed polymorphism in a wild population of R. marginata (N = 38) collected from Bangalore, India. These markers will facilitate answering some interesting questions in ecology and evolutionary biology of this wasp, such as population structure, serial polygyny, intra-colony genetic relatedness and the pattern of queen succession.
Resumo:
C12HI6N206 is orthorhombic, P2x2121, with a = 19.890 (5), b = 12.789 (2), c = 5.236 (1) A, Z = 4, U = 1331.9/~ 3, F(000) = 600. Mo Ka (/~ = 0.123 mm -1) intensities for 940 unique reflections up to sin 0/2 = 0.538/k -1 were collected on a CAD-4 diffractometer. Final R = 0.034. The glycosidic torsion angle 2~CN is 3"4 °, significantly smaller than that (56.5 °) in 2',3'- -methoxymethyleneuridine (MMU). The ribose moiety has a C(3')-exo-C(4')-endo twist conformation, in contrast to the C(2')-endo conformation in MMU. However, the maximum amplitudes of pucker for the ribose and dioxolane rings are very nearly the same for the two structures. The conformation about C(4')-C(5') is gauche-gauche (~0oo = -68-4, Ooc = 51.3°).
Resumo:
The design, implementation and evaluation are described of a dual-microcomputer system based on the concept of shared memory. Shared memory is useful for passing large blocks of data and it also provides a means to hold and work with shared data. In addition to the shared memory, a separate bus between the I/O ports of the microcomputers is provided. This bus is utilized for interprocessor synchronization. Software routines helpful in applying the dual-microcomputer system to realistic problems are presented. Performance evaluation of the system is carried out using benchmarks.
Resumo:
Thiophosphoryl fluoride is observed to undergo a facile reaction with sulphur trioxide forming phosphoryl fluoride, sulphur dioxide and elemental sulphur in quantitative yields. In the presence of excess of sulphur trioxide, however, the elemental sulphur released combines with it to form sulphur sesquioxide which subsequently decomposes and gives off sulphur dioxide. Similar observations are made with oleum.
Resumo:
Abstract is not available.
Resumo:
The elastic constants of single crystal galena have been determined from the measured ultrasonic velocities down to liquid helium temperature. A cryostat incorporating an arrangement to inject the liquid bonding material at low temperature is described. At 5 K, the values of elastic constants are C11=14.90, C12=3.51 and C44=2.92×1010 N/m2.
Resumo:
The electrostatic potential of valinomycin in various conformations as obtained by the crystal structures (uncomplexed, complexed) and theoretical considerations have been evaluated and compared. The potential energy profiles along the æ axis of the bracelet-like structures show a systematic variation from the uncomplexed to the complexed structure. This type of conformational change and the potential variation are probably associated with different states of ion transport, like the capture and release of ions by the ionophore. Also, the asymmetry of the molecule due to D-HyIV on one side and L-Lac on the other side is reflected in the potential values along the Z-axis, the magnitude of which, is considerable in the uncomplexed structure. The evaluation of the potential at the ab-initio level on smaller fragments indicate that the order of liganding capacity of oxygen is amide ether ester. Also, the inductive effects due to alkyl substitution is negligible as evidenced by the potential studies on the substituted amides and esters.
Resumo:
CDH406P-.Na +.H20 , M r = 208.0, is monoclinic, Cc, a = 11.423 (2), b = 23.253 (5), c - 6.604 (1) A, fl = 123.63 (1) °, U = 1460.6 A 3, D x =. 1.89 Mg m -a, Z = 8, 2(Mo Ka) = 0.7107 A, p(Mo Ka) = 0.44 mm -~, F(000) = 840. Final R = 0.063 for 1697 reflections.The two crystallographically independent molecules of phosphoenolpyruvate (PEP) (A and B) are almost mirror images of each other, the mirror being the planar enolpyruvate group. The torsion angle C(3)-C(2)- O(1)-P(1) is 122.6 in A and -112.0 ° in B, in contrast to -209.1 ° in PEP.K. The enolic C(2)-O(1) has a partial double-bond character [1.401 (A), 1.386A (B)]. The high-energy P~O bond (1.595 and 1.610A) is comparable to that in PEP.K (1.612 A). Na(1) has six nearest neighbours while Na(2) has only five. The Na + ions are involved in binding only the phosphates of different molecules, in contrast to the K ÷ ion in PEP. K, which binds to both the phosphate and carboxyl ends of the same molecule. The planar carboxyl groups stack on each other at an average distance of 3.2 A instead of forming hydrogen-bonded dimers usually found in carboxylate structures.
Resumo:
Reaction of Bi2O3 with MgO, NiO, Co3O4 and Al2O3 gives rise to the corresponding ternary bismuth oxides, Bi18Mg8O36, Bi18Ni8O36, Bi20Co6O39 and Bi24Al2O39. These oxides have the general formula Bi26�xMxO40�y and exhibit BCC structures related to α - Bi2O3. In the first three solids, the metal ions, M, replace bismuth randomly at the octahedral 24r sites (space group 123); in the last case, aluminium ions occupy the tetrahedral 2a sites, the phase being isostructural with Bi24Ge2O40. Starting from Bi2O3 and NiO, orthorhombic Bi2Ni2O5 has also been obtained.
Resumo:
Nickel(I1) and palladium(I1) complexes of the types Ni(R-IAI)(IAI'), Pd(IAI)(IAI'), and Pd(R-IAI), , where IAI and IAI' represent isonitrosoacetylacetone imine and R-IAI represents its Aralkyl derivative, have been prepared. The molar conductance, molecular weight, magnetic moment, and ir, pmr, and electronic spectra of these com- plexes have been studied. It is suggested that the isonitroso group of R-IAI coordinates through the nitrogen and that of IAI' thiough the oxygen in Ni(R-IAI)(IAI'). In Pd(R-IAI), the isonitroso groups of both ligands coordinate through nitrogen while Pd(IAI)(IAI') has a structure similar to that of Ni(R-IAI)(IAI'). The amine- exchange reactions of nickel(I1) and palladium(I1) complexes are discussed and compared on the basis of their structures.
Resumo:
Peroxidase from Mycobacterium tuberculosis H37Rv was purified to homogeneity. The homogeneous protein exhibits catalase and Y (Youatt's)-enzyme activities in addition to peroxidase activity. Further confirmation that the three activities are due to a single enzyme was accomplished by other criteria, such as differential thermal inactivation, sensitivity to different inhibitors, and co-purification. The Y enzyme (peroxidase) was separated from NADase (NAD+ glycohydrolase) inhibitor by gel filtration on Sephadex G-200. The molecular weights of peroxidase and NADase inhibitor, as determined by gel filtration, are 240000 and 98000 respectively. The Y enzyme shows two Km values for both isoniazid (isonicotinic acid hydrazide) and NAD at low and high concentrations. Analysis of the data by Hill plots revealed that the enzyme has one binding site at lower substrate concentrations and more than one at higher substrate concentration. The enzyme contains 6g-atoms of iron/mol. Highly purified preparations of peroxidases from different sources catalyse the Y-enzyme reaction, suggesting that the nature of the reaction may be a peroxidatic oxidation of isoniazid. Moreover, the Y-enzyme reaction is enhanced by O2. Isoniazid-resistant mutants do not exhibit Y-enzyme, peroxidase or catalase activities, and do not take up isoniazid. The Y-enzyme reaction is therefore implicated in the uptake of the drug.