38 resultados para 1-5
Resumo:
A porous carbon foam (CF) electrode modified with a reduced graphene oxide-Ag (rGO-Ag) nanocomposite has been fabricated to purify water. It can perform as an antibacterial device by killing pathogenic microbes with the aid of a 1.5 V battery, with very little power consumption. The device is recycled ten times with good performance for long term usage. It is shown that the device may be implemented as a fast water purifier to deactivate the pathogens in drinking water.
Resumo:
A mild and convenient oxidative transformation of secondary alcohols to 1,5-disubstituted tetrazoles is uncovered by employing trimethylsilyl azide (TMSN3) as a nitrogen source in the presence of a catalytic amount of copper(II) perchlorate hexahydrate Cu(ClO4)(2)(.)6H(2)O] (5mol%) and 2,3-dichloro-5,6-dicyano-para-benzoquinone (DDQ) (1.2equiv.) as an oxidant. This reaction is performed under ambient conditions and proceeds through CC bond cleavage.
Resumo:
The cis-amide bond isostere, 1,5-disubstituted tetrazole,has been introduced in the peptide backbone by a simple route starting from the thiopeptide. The desired 1,5-disubstituted tetrazole peptidomimetics were synthesized by the desulfurization of thiopeptides by using HgCl2 in the presence of NaN3/TEA in DMF in good yields. Various other thiophilic reagents including hypervalent iodine reagents failed to deliver the tetrazole product with the exception of CBr4/PPh3, which resulted in moderate yields. The advantage of the present protocol over previous methods has been demonstrated by the selective insertion of tetrazole into peptide-thiopeptide hybrids. Also, the protocol is compatible with commonly employed urethane protecting groups (Fmoc, Boc, and Cbz) in peptide chemistry. Thiopeptide Boc-Pro-CSNH]-Val-OMe (2i) and two tetrazole peptidomimetics Cbz-Ala-CN4]-Phe-OMe (3d) and Boc-Pro-CN4]-Val-OMe (3i) were obtained as single crystals and their molecular structures have been confirmed by X-ray crystallography.
Resumo:
Total syntheses of (±)-1,4-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol(11a), (±)-2,3-dimethoxy-6,6-dimethyl-B-norestra-1,3,5(10)-trien-17?-ol (11b), and (±)-3-methoxy-6,6-dimethyl-B-norestra-1,3,5(10)trien-17?-ol (11c), have been carried out starting from 4,7-dimethoxy-3,3-dimethylindan-1-one (1), 5,6-dimethoxy-3,3-dimethylindan-1-one (2), and 4?-methoxy-3-methylbut-2-enophenone (4), respectively. Generally, it is found that the intermediate 6,6-dimethyl-B-norestra-1,3,5(10),8-tetraen-17?-ols (10), on lithium�liquid ammonia reduction, yield a mixture of 8?,9?- and 8?,9?-trienols, (11) and (12) respectively, in the ratio 1 : 1. This is due to the comparable stabilities of these two isomers. However, the reduction carried out in presence of aniline affords a higher percentage of the 8?,9?-trienol (11). The assignment of configurations is made by chemical and 1H n.m.r. analysis. Catalytic hydrogenation of the tetraenols (10) is shown to proceed via initial isomerisation to the corresponding 6,6-dimethyl-B-norestra-1,3,5(10),9(11)-tetraen-17?-ols (26), followed by hydrogenation from the ?-side to give, exclusively, the 8?,9?-trienols (12).
Resumo:
Reaction of 6-acetoxy-5-bromomethylquinoline (1c) and 2-bromomethyl-4-(2'-pyridyl)phenyl acetate (2b) with tetrachlorocatechol in acetone in the presence of anhydrous potassium carbonate resulted in the formation of diastereomeric products 3c, 3d, 4e and 4f.
Resumo:
In order to explore the anticancer effect associated with the thiazolidinone framework, several 2-(5-((5-(4-chlorophenyl)furan-2-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)acetic acid derivatives 5(a-1) were synthesized. Variation in the functional group at C-terminal of the thiazolidinone led to set of compounds bearing amide moiety. Their chemical structures were confirmed by H-1 NMR, IR and Mass Spectra analysis. These thiazolidinone compounds containing furan moiety exhibits moderate to strong antiproliferative activity in a cell cycle stage-dependent and dose dependent manner in two different human leukemia cell lines. The importance of the electron donating groups on thiazolidinone moiety was confirmed by MTT and Trypan blue assays and it was concluded that the 4th position of the substituted aryl ring plays a dominant role for its anticancer property. Among the synthesized compounds, 5e and 5f have shown potent anticancer activity on both the cell lines tested. To rationalize the role of electron donating group in the induction of cytotoxicity we have chosen two molecules (5e and 5k) having different electron donating group at different positions. LDH assay, Flow cytometric analysis and DNA fragmentation suggest that 5e is more cytotoxic and able to induce the apoptosis. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Reaction of the title compound (1a) with anhydrous MeOH-HCl gave 2-endo-(2,6-dimethoxyphenyl)-2-exo-methyl-5-methylbicyclo[3.2.1]octane-6,8-dione (3a), 1,5,14-timethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),9(11)-tetraen-17-one (4), 1,5-dimethoxy-5,8-seco-6,7-dinorestra-1,3,5(10),8,14-pentaen-17-one (5), and 3,4,5,6-tetrahydro-2,7-dimethoxy-3,6-dimethyl-3,2,6-(13-oxopropan[1]yI[3]ylidene)-2H-1-benzoxocin (6). Structures assigned to compounds (3a), (4), and (6) are based on spectral data. The exo-tricyclic acetal structure (6) was further confirmed by the analysis of the 1H n.m.r. spectra of the isomeric alcohols (11) and (12), obtained by sodium borohydride reduction of (6).
Resumo:
This paper reports on the liquid-helium-temperature (5 K) electron paramagnetic resonance (EPR) spectra of Cr3+ ions in the nanoparticles of SnO2 synthesized at 600 degrees C with concentrations of 0%, 0.1%, 0.5%, 1%, 1.5%, 2.0%, 2.5%, 3.0%, 5.0%, and 10%. Each spectrum may be simulated as overlap of spectra due to four magnetically inequivalent Cr3+ centers characterized by different values of the spin-Hamiltonian parameters. Three of these centers belong to Cr3+ ions in orthorhombic sites, situated near oxygen vacancies, characterized by very large zero-field splitting parameters D and E, presumably due to the presence of nanoparticles in the samples. The fourth EPR spectrum belongs to the Cr3+ ions situated at sites with tetragonal symmetry, substituting for the Sn4+ ion, characterized by a very small value of D. In addition, there appears a ferromagnetic resonance line due to oxygen defects for samples with Cr3+ concentrations of <= 2.5%. Further, in samples with Cr3+ concentrations of >2.5%, there appears an intense and wide EPR line due to the interactions among the Cr3+ ions in the clusters formed due to rather excessive doping; the intensity and width of this line increase with increasing concentration. The Cr3+ EPR spectra observed in these nanopowders very different from those in bulk SnO2 crystals.
Resumo:
Bi5Ti3FeO15 and Bi7Ti3Fe3O21 which are n=4 and n=6 members of the family of oxides of the general formula (Bi2O2)2+(An−1BnO3n+1)2− show unusual superstructures, possibly due to cation ordering. Bi5Ti3FeO15; Bi7Ti3Fe3O21; oxides.
Resumo:
Serine hydroxymethyltransferase, the first enzyme in the pathway for interconversion of C1 fragments, was purified to homogeneity for the first time from any plant source. The enzyme from 72-h mung bean (Vigna radiata L.) seedlings was isolated using Blue Sepharose CL-6B and folate-AH-Sepharose-4B affinity matrices and had the highest specific activity (1.33 micromoles of HCHO formed per minute per milligram protein) reported hitherto. The enzyme preparation was extremely stable in the presence of folate or L-serine. Pyridoxal 5'-phosphate, ethylenediaminetetraacetate and 2-mercaptoethanol prevented the inactivation of the enzyme during purification. The enzyme functioned optimally at pH 8.5 and had two temperature maxima at 35 and 55°C. The Km values for serine were 1.25 and 68 millimolar, corresponding to Vmax values of 1.8 and 5.4 micromoles of HCHO formed per minute per milligram protein, respectively. The K0.5 value for L-tetrahydrofolate (H4folate) was 0.98 millimolar. Glycine, the product of the reaction and D-cycloserine, a structural analog of D-alanine, were linear competitive inhibitors with respect to L-serine with Ki values of 2.30 and 2.02 millimolar, respectively. Dichloromethotrexate, a substrate analog of H4folate was a competitive inhibitor when H4folate was the varied substrate. Results presented in this paper suggested that pyridoxal 5'-phosphate may not be essential for catalysis.The sigmoid saturation pattern of H4folate (nH = 2.0), one of the substrates, the abolition of sigmoidicity by NADH, an allosteric positive effector (nH = 1.0) and the increase in sigmoidicity by NAD+ and adenine nucleotides, negative allosteric effectors (nH = 2.4) clearly established that this key enzyme in the folate metabolism was an allosteric protein. Further support for this conclusion were the observations that (a) serine saturation exhibited an intermediary plateau region; (b) partial inhibition by methotrexate, aminopterin, O-phosphoserine, DL-{alpha}-methylserine and DL-O-methylserine; (c) subunit nature of the enzyme; and (d) decrease in the nH value from 2.0 for H4folate to 1.5 in presence of L-serine. These results highlight the regulatory nature of mung bean serine hydroxymethyltransferase and its possible involvement in the modulation of the interconversion of folate coenzymes.
Resumo:
Die kristalline Struktur von Aza-twistanon wurde durch eine Röntgenstruktur-analyse untersucht. Die Kristalle gehören zur monoklinen Raumgruppe P21/n mit den Zelldimensionen a = 6,662(6), b = 13,36(2), c = 8,606(9) Å, = 98,97(2)°, V = 757 Å3, Z = 4. Die Struktur wurde mit Direktmethoden gelöst und bis zu R = 0,035 verfeinert (mittlere (c) = 0,003 Å3).Die cis-Amidgruppe ist relativ stark deformiert und hat einen Torsionswinkel C -C -N-C von 14,5(4)° (Deformation aus der Ebene c = 5,0(5)° und N = 13,5(4,0)°). Die gegenüberliegende äthylenbrücke weist einen Torsionswinkel von 25,1(5)° auf. Die entsprechenden Winkel in Twistan betragen je 20°. Das tricyclische Gerüst von Aza-twistanon hat approximative.
Resumo:
The effect of high hydrostatic pressure up to 1.5 GPa on ionic motion in (NH4)4Fe(CN)6.1.5H2O has been studied by wide-line 1H NMR experiments performed in the temperature range from room temperature to 77 K. The experiments at room temperature have shown a large increase in the second moment at 0.45 GPa as a result of a pressure-induced phase transition. The temperature dependence study up to 0.425 GPa has shown a gradual increase in the values of activation energy and attempt frequency with increase in pressure. The activation volume for motion at 300 K has been estimated to be 6% of molar volume. Vacancy-assisted ionic jumps are concluded to be the mode of charge transport. Second moments estimated at 77 K show evidence for tunnelling reorientation of at least one of the two NH4+ groups in the compound.
Resumo:
Thermal activation of the normal Claisen products, the enones 4 7 and 14 in the presence of a catalytic amount of propionic acid generated the isomeric enones 6 9 and 15 via the sequential intramolecular ene-reaction of the enol tautomer followed by 1,5-hydrogen transfer (or retro ene-reaction) of the resultant acetyl cyclopropane intermediate. conversion of the enones 9 and 15 into the corresponding cyclohexenones 10 and 16 established the structures of the rearrangement products.
Resumo:
Rare-earth nickelates Ln(2)BaNi(1-x)Cu(2)O(5), Ln = Nd and Dy, and Dy2-xYxBaNiO5 have been synthesized in order to investigate the effect of substitution of Ni by Cu and Dy by nonmagnetic Y on the magnetic properties of the nickelates. In Ln(2)BaNi(1-x)Cu(x)O(5), the nickelate structure (x=0.0) changes to the cuprate structure (x=1.0) at a specific composition (x=0.3). The Neel temperature of Nd2BaNi1-xCuxO5 decreases continuously with increase in x upto x=0.3 (T-N = 18K); when x > 0.3, the materials are paramagnetic down to 20K. The mu(eff) in Nd2BaNi1-xCxO5 essentially corresponds to the contribution of the Nd ions. In Dy2-xYxBaNiO5, the Neel temperature decreases from 40K when x=0.0 to 24K when x=1.5. The compositions with 1.5 less than or equal to x less than or equal to 2 (including the x=1.95 composition) are paramagnetic down to 20K, unlike Y2BaNiO5 (x=2.0) which exhibits a T-N of 370K. Even the smallest concentration of paramagnetic Dy seems to destroy the antiferromagnetic Ni-O-Ni chains in Y2BaNiO5.
Resumo:
Synthesis of methyl 2, 7-dimethyltricyclo{5.2.2.0(1,5}undec-5-en-6-carboxylates, the tricyclic skeleton present in (+)-allo-cedrol (1) is described using the Diels-Alder strategy. Thus, Birch reduction of the aromatic acid 8 gives 5, the methyl ester of which is isomerised with DBU to a 1:1 mixture of the dienes 6 and 4. Cycloaddition of this mixture with 2-chloroacrylonitrile followed by hydrolysis yields the ketone 60 having the tricyclo{5.2.2.0(1.5)}undec-5-ene framework. Similar reaction with methyl vinyl ketone affords the regioisomeric adducts 61 and 62.