460 resultados para Uric Acid.
Resumo:
The characteristics of an in vitro polyuridylic acid dependent amino acid incorporating system prepared from germinating macroconidia of Microsporum canis are described. The incorporation of 14C-phenylalanine into polyphenylalanine is dependent on S-30 extract, adenosine triphosphate, magnesium ions and polyuridylic acid. Incorporation is slightly enhanced by yeast transfer ribonucleic acid and pyruvate kinase. The system is highly sensitive to ribonuclease, puromycin and miconazole (an antifungal agent), moderately sensitive to sodium fluoride and much less sensitive to phenethylalcohol, cycloheximide, chloramphenicol and deoxyribonuclease. Cell-free extract from ungerminated conidia has less capacity to synthesize the protein and during germination a marked increase in the protein synthetic activity is observed. The results from experiments wherein ribosomes and S-100 fraction from germinated and ungerminated spores are interchanged, revealed that the defect in the extract from the ungerminated spore is in the ribosomes.
Resumo:
The X-ray analysis of the tetranuclear copper(II) complex formed from pyridoxic acid and 2,2′-dipyridylamine reveals a novel metal binding mode of pyridoxic acid as a multibridged tetradentate dianion. Here the pyridoxic acid moiety uses all possible sites except the pyridine nitrogen for metal coordination.
Resumo:
The structures of complexes of 1,3-diaminopropane With L- and DL-glutamic acid have been determined. L-Glutamic acid complex: C3H12N22+.2C5H8NO4-, M(r) = 368.4, orthorhombic. P2(1)2(1)2(1), a = 5.199 (1), b = 16.832 (1). c = 20.076 (3) angstrom, V = 1756.6 (4) angstrom3, z = 4, D(x) = 1.39 g cm-3, lambda(Mo K-alpha) = 0.7107 angstrom, mu = 1.1 cm-1, F(000) = 792. T = 296 K, R = 0.044 for 1276 observed reflections. DL-Glutamic acid complex: C3H12N22+.2C5H8NO4-, M(r) = 368.4, orthorhombic, Pna2(1), a = 15.219(2), b = 5.169 (1), c 22.457 (4) angstrom, V = 1766.6 (5) angstrom3 Z = 4, D(x) = 1.38 g cm-3, lambda(Mo K-alpha) = 0.7107 angstrom, mu = 1.1 cm F(000) = 792, T = 296 K, R = 0.056 for 993 observed reflections. The conformation of diaminopropane is all-trans in the DL complex but trans-gauche in the L complex. The main packing feature in the L complex is the arrangement of diaminopropane around dimers of antiparallel L-glutamic acid molecules. The diaminopropane in the DL complex is sandwiched between two antiparallel glutamic acid molecules of the same chirality and this forms the basic packing unit. This might be the dominant form of interaction between L-glutamic acid and diaminopropane in solution. The structures reveal the adaptability of the polyamine backbone to different environments and the probable reasons for their choice as biological cations.
Resumo:
The polyamines spermine, spermidine, putrescine, cadaverine, etc. have been implicated in a variety of cellular functions. However, details of their mode of interaction with other ubiquitous biomolecules is not known. We have solved a few structures of polyamine-amino acid complexes to understand the nature and mode of their interactions. Here we report the structure of a complex of putrescine with DL-glutamic acid. Comparison of the structure with the structure of putrescine-L-glutamic acid complex reveals the high degree of similarity in the mode of interaction in the two complexes. Despite the presence of a centre of symmetry in the present case, the arrangement of molecules is strikingly similar to the L-glutamic acid complex.
Resumo:
A Schiff base metal complex, [Cu(II)(PLP-DL-tyrosinato)(H2O)].4H2O (PLP = pyridoxal phosphate), with the molecular formula CuC17O13N2H27P has been prepared and characterized by magnetic, spectral, and X-ray structural studies. The compound crystallizes in the triclinic space group P1BAR with a = 8.616 (2) angstrom, b = 11.843 (3) angstrom, c = 12.177 (3) angstrom, alpha = 103.40 (2)degrees, beta = 112.32 (2)degrees, gamma = 76.50 (1)degrees, and Z = 2. The structure was solved by the heavy-atom method and refined by least-squares techniques to a final R value of 0.057 for 3132 independent reflections. The coordination geometry around Cu(II) is distorted square pyramidal with phenolic oxygen, imino nitrogen, and carboxylate oxygen from the Schiff base ligand and water oxygen as basal donor atoms. The axial site is occupied by a phosphate oxygen from a neighboring molecule, thus resulting in a one-dimensional polymer. The structure reveals pi-pi interaction of the aromatic side chain of the amino acid with the pyridoxal pi system. A comparative study is made of this complex with similar Schiff base complexes. The variable-temperature magnetic behavior of this compound shows a weak antiferromagnetic interaction.
Resumo:
Chloroquinones are prepared conveniently from phenol, naphthols and aromatic amines.
Resumo:
The polyamines spermine, spermidine, putrescine, cadaverine, etc. have been implicated in a variety of cellular functions. However, details of their mode of interaction with other ubiquitous biomolecules is not known. We have solved a few structures of polyamine-amino acid complexes to understand the nature and mode of their interactions. Here we report the structure of a complex of putrescine with DL-glutamic acid. Comparison of the structure with the structure of putrescine-L-glutamic acid complex reveals the high degree of similarity in the mode of interaction in the two complexes. Despite the presence of a centre of symmetry in the present case, the arrangement of molecules is strikingly similar to the L-glutamic acid complex.
Resumo:
The minor base composition of Mycobacterium smegmatis tRNA has been studied. Thin-layer chromatographic patterns of a ribonuclease T2 digest of mycobacterial tRNA indicated the presence of appreciable amounts of 1-methyladenosine (which is commonly present only in eucaryotic tRNA), dihydrouridine, and 7-methylguanosine. Ribothymidine was absent. The S-adenosylmethionine-dependent tRNA methylases of M. smegmatis catalyzed the formation of 1-methyladenosine when Escherichia coli tRNA was used as acceptor. Similarly, E. coli extracts methylated the tRNA of M. smegmatis, forming ribothymidine.
Resumo:
The determination of the state-of-charge of the lead-acid battery has been examined from the viewpoint of internal impedance. It is shown that the impedance is controlled by charge transfer and to a smaller extent by diffusion processes in the frequency range 15–100 Hz. The equivalent series/parallel capacitance as well as the a.c. phase-shift show a parabolic dependence upon the state-of-charge, with a maximum or minimum at 50% charge. These results are explained on the basis of a uniform transmission-line analog equivalent circuit for the battery electrodes.