285 resultados para TGF-BETA SIGNALING
Resumo:
The alpha v beta 3 and alpha v beta 5 integrins, transmembrane glycoprotein receptors, are over-expressed in numerous tumors and in endothelial cells that constitute tumor blood vessels. As this protein selectively binds to the Arg-Gly-Asp (RGD) sequence containing peptides, it is an attractive way to target tumors. Herein we have developed novel formulations for integrin mediated selective gene delivery. These formulations are composed of a novel palmitoylated tetrameric RGD containing scaffold (named RAFT-RGD), cationic gemini cholesterol (GL5) and a natural helper lipid 1,2-dioleoyl-L-alpha-glycero-3-phosphatidylethanolamine (DOPE). We have optimized a co-liposomal formulation to introduce the multivalent RGD-containing macromolecule in GL5: DOPE (GL5D) mixture to produce GL5D-RGD. We have unambiguously shown the selectivity of these formulations towards cancer cells that over express alpha v beta 3 and alpha v beta 5 integrins. Two reporter plasmids, pEGFP-C3 and PGL-3, were employed for the transfection experiments and it was shown that GL5D-RGD Liposomes increased exclusively the transfection in alpha v beta 3 and alpha v beta 5 overexpressing HeLa cells.
Resumo:
Copper-catalyzed, ligand-promoted decarboxylative coupling of readily available a,fi-unsaturated acids with sodium aryl sulfinates is presented. This method provides a new avenue for the synthesis of vinyl sulfones via a decarboxylative radical coupling strategy by employing a catalytic amount of Cu(ClO4)(2)center dot 6H(2)O, TBHP in decane as an oxidant, and 1,10-phenanthroline as a ligand. The salient feature of this method is that it furnishes exclusively the (E)-isomer.
Resumo:
Close-packed helices with mixed hydrogen bond directionality are unprecedented in the structural chemistry of alpha-polypeptides. While NMR studies in solution state provide strong evidence for the occurrence of mixed helices in (beta beta)(n) and (alpha beta)(n) sequences, limited information is currently available in crystals. The peptide structures presented show the occurrence of C-11/C-9 helices in (alpha beta)(n) peptides. Transitions between C-11 and C-11/C-9 helices are observed upon varying the alpha-amino acid residue.
Resumo:
The current manuscript describes conformational analysis of 15-membered cyclic tetrapeptides (CTPs), with alpha 3 delta architecture, containing sugar amino acids (SAA) having variation in the stereocenter at C5 carbon. Conformational analyses of both the series, in protected and deprotected forms, were carried out in DMSO-d(6) using various NMR techniques, supported by restrained MD calculations. It was intriguing to notice that the alpha 3 delta macrocycles got stabilized by both 10-membered beta-turn as well as a seven-membered gamma-turn, fused within the same macrocycle. The presence of fused sub-structures within a 15-membered macrocycle is rare to see. Also, the stereocenter variation at C5 did not affect the fused turn structures and exhibited similar conformations in both the series. The design becomes highly advantageous as fused reverse turn structures are occurring in the cyclic structure with minimalistic size macrocycle and this can be applied to develop suitable pharmacophores in the drug development process. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Mutations in the CINCINNATA (CIN) gene in Antirrhinum majus and its orthologs in Arabidopsis result in crinkly leaves as a result of excess growth towards the leaf margin. CIN homologs code for TCP (TEOSINTE-BRANCHED 1, CYCLOIDEA, PROLIFERATING CELL FACTOR 1 AND 2) transcription factors and are expressed in a broad zone in a growing leaf distal to the proliferation zone where they accelerate cell maturation. Although a few TCP targets are known, the functional basis of CIN-mediated leaf morphogenesis remains unclear. We compared the global transcription profiles of wild-type and the cin mutant of A. majus to identify the targets of CIN. We cloned and studied the direct targets using RNA in situ hybridization, DNA-protein interaction, chromatin immunoprecipitation and reporter gene analysis. Many of the genes involved in the auxin and cytokinin signaling pathways showed altered expression in the cin mutant. Further, we showed that CIN binds to genomic regions and directly promotes the transcription of a cytokinin receptor homolog HISTIDINE KINASE 4 (AmHK4) and an IAA3/SHY2 (INDOLE-3-ACETIC ACID INDUCIBLE 3/SHORT HYPOCOTYL 2) homolog in A. majus. Our results suggest that CIN limits excess cell proliferation and maintains the flatness of the leaf surface by directly modulating the hormone pathways involved in patterning cell proliferation and differentiation during leaf growth.
Resumo:
A number of functionalized beta-amino and gamma-amino sulfides and selenides have been synthesized involving a one-pot process of ring opening of cyclic sulfamidates with `in situ' generated thiolate and selenoate species from diaryl disulfides and diphenyl diselenide using rongalite. A mild and efficient method has been developed for the synthesis of cysteines from serine.
Resumo:
Secondary structure formation in oligopeptides can be induced by short nucleating segments with a high propensity to form hydrogen bonded turn conformations. Type I/III turns facilitate helical folding while type II'/I' turns favour hairpin formation. This principle is experimentally verified by studies of two designed dodecapeptides, Boc-Val-Phe-Leu-Phe-Val-Aib-Aib-Val-Phe-Leu-Phe-Val-OMe 1 and Boc-Val-Phe-Leu-Phe-Val- (D) Pro- (L) Pro-Val-Phe-Leu-Phe-Val-OMe 2. The N- and C-terminal flanking pentapeptide sequences in both cases are identical. Peptide 1 adopts a largely alpha-helical conformation in crystals, with a small 3(10) helical segment at the N-terminus. The overall helical fold is maintained in methanol solution as evidenced by NMR studies. Peptide 2 adopts an antiparallel beta-hairpin conformation stabilized by 6 interstrand hydrogen bonds. Key nuclear Overhauser effects (NOEs) provide evidence for the antiparallel beta-hairpin structure. Aromatic proton chemical shifts provide a clear distinction between the conformation of peptides 1 (helical) and 2 (beta-hairpin). The proximity of facing aromatic residues positioned at non-hydrogen bonding positions in the hairpin results in extensively ring current shifted proton resonances in peptide 2.
Resumo:
The bglA gene of Escherichia coli encodes phospho-beta-glucosidase A capable of hydrolyzing the plant-derived aromatic beta-glucoside arbutin. We report that the sequential accumulation of mutations in bglA can confer the ability to hydrolyze the related aromatic beta-glucosides esculin and salicin in two steps. In the first step, esculin hydrolysis is achieved through the acquisition of a four-nucleotide insertion within the promoter of the bglA gene, resulting in enhanced steady-state levels of the bglA transcript. In the second step, hydrolysis of salicin is achieved through the acquisition of a point mutation within the bglA structural gene close to the active site without the loss of the original catabolic activity against arbutin. These studies underscore the ability of microorganisms to evolve additional metabolic capabilities by mutational modification of preexisting genetic systems under selection pressure, thereby expanding their repertoire of utilizable substrates.
Resumo:
Translation initiation in Hepatitis C Virus (HCV) is mediated by Internal Ribosome Entry Site (IRES), which is independent of cap-structure and uses a limited number of canonical initiation factors. During translation initiation IRES-40S complex formation depends on high affinity interaction of IRES with ribosomal proteins. Earlier, it has been shown that ribosomal protein S5 (RPS5) interacts with HCV IRES. Here, we have extensively characterized the HCV IRES-RPS5 interaction and demonstrated its role in IRES function. Computational modelling and RNA-protein interaction studies demonstrated that the beta hairpin structure within RPS5 is critically required for the binding with domains II and IV. Mutations disrupting IRES-RPS5 interaction drastically reduced the 80S complex formation and the corresponding IRES activity. Computational analysis and UV cross-linking experiments using various IRES-mutants revealed interplay between domains II and IV mediated by RPS5. In addition, present study demonstrated that RPS5 interaction is unique to HCV IRES and is not involved in 40S-3 ` UTR interaction. Further, partial silencing of RPS5 resulted in preferential inhibition of HCV RNA translation. However, global translation was marginally affected by partial silencing of RPS5. Taken together, results provide novel molecular insights into IRES-RPS5 interaction and unravel its functional significance in mediating internal initiation of translation.
Resumo:
Interdiffusion study is conducted in the Ni-rich part of the beta-Ni(Pt)Al phase following the pseudo-binary approach. Interdiffusion coefficients over the whole composition range considered in this study increases with increase in Pt content, which is in line with the theoretical study predicting the decrease in vacancy formation and migration energy because of Pt addition. The trend of change in diffusion coefficient with the increase in Ni and Pt contents indicates that Pt preferably replaces Ni antisites.
Resumo:
The solid state structure of a new seven-membered sugar oxepane derivative, namely, p-bromo phenyl 4,5,7-tri-O-benzyl-beta-D-glycero-D-talo-septanoside is discussed, as determined through single crystal X-ray structural determination and in relation to their conformational features. The molecule adopts twist-chair as the preferred conformation, with conformational descriptor (TC2,3)-T-0,1. The solid state packing of molecules is governed by a rich network of non-covalent bonding originating from O-H center dot center dot center dot O, C-H center dot center dot center dot pi, C-H center dot center dot center dot Br and aromatic pi center dot center dot center dot pi interactions that stabilize the packing of molecules in the crystal. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Insulin like growth factor binding protein 2 (IGFBP2) is highly up regulated in glioblastoma (GBM) tissues and has been one of the prognostic indicators. There are compelling evidences suggesting important roles for IGFBP2 in glioma cell proliferation, migration and invasion. Extracellular IGFBP2 through its carboxy terminal arginine glycine aspartate (RGD) motif can bind to cell surface alpha 5 beta 1 integrins and activate pathways downstream to integrin signaling. This IGFBP2 activated integrin signaling is known to play a crucial role in IGFBP2 mediated invasion of glioma cells. Hence a molecular inhibitor of carboxy terminal domain of IGFBP2 which can inhibit IGFBP2-cell surface interaction is of great therapeutic importance. In an attempt to develop molecular inhibitors of IGFBP2, we screened single chain variable fragment (scFv) phage display libraries, Tomlinson I (Library size 1.47 x 10(8)) and Tomlinson J (Library size 1.37 x 10(8)) using human recombinant IGFBP2. After screening we obtained three IGFBP2 specific binders out of which one scFv B7J showed better binding to IGFBP2 at its carboxy terminal domain, blocked IGFBP2-cell surface association, reduced activity of matrix metalloprotease 2 in the conditioned medium of glioma cells and inhibited IGFBP2 induced migration and invasion of glioma cells. We demonstrate for the first time that in vitro inhibition of extracellular IGFBP2 activity by using human scFv results in significant reduction of glioma cell migration and invasion. Therefore, the inhibition of IGFBP2 can serve as a potential therapeutic strategy in the management of GBM.
Resumo:
Sulfenylation of beta-diketones is challenging as beta-diketones undergo deacylation after sulfenylation in the reaction medium. The sulfenylation of beta-diketones without deacylation under metal-free conditions at ambient temperature via a cross dehydrogenative coupling (CDC) strategy is reported. The resultant products can be further manipulated to form alpha,alpha-disubstituted beta-diketones and pyrazoles.
Resumo:
Hedgehog (HH) signaling is a significant regulator of cell fate decisions during embryogenesis, development, and perpetuation of various disease conditions. Testing whether pathogen-specific HH signaling promotes unique innate recognition of intracellular bacteria, we demonstrate that among diverse Gram-positive or Gram-negative microbes, Mycobacterium bovis BCG, a vaccine strain, elicits a robust activation of Sonic HH (SHH) signaling in macrophages. Interestingly, sustained tumor necrosis factor alpha (TNF-alpha) secretion by macrophages was essential for robust SHH activation, as TNF-alpha(-/-) macrophages exhibited compromised ability to activate SHH signaling. Neutralization of TNF-alpha or blockade of TNF-alpha receptor signaling significantly reduced the infection-induced SHH signaling activation both in vitro and in vivo. Intriguingly, activated SHH signaling downregulated M. bovis BCG-mediated Toll-like receptor 2 (TLR2) signaling events to regulate a battery of genes associated with divergent functions of M1/M2 macrophages. Genome-wide expression profiling as well as conventional gain-of-function or loss-of-function analysis showed that SHH signaling-responsive microRNA 31 (miR-31) and miR-150 target MyD88, an adaptor protein of TLR2 signaling, thus leading to suppression of TLR2 responses. SHH signaling signatures could be detected in vivo in tuberculosis patients and M. bovis BCG-challenged mice. Collectively, these investigations identify SHH signaling to be what we believe is one of the significant regulators of host-pathogen interactions.
Resumo:
Thermoelectric properties of semiconducting beta-FeSi2 containing a homogeneous distribution of Si secondary phase have been studied. The synthesis was carried out using arc melting followed by the densification by uniaxial hot pressing. Endogenous beta-FeSi2/Si composites were produced by the eutectoid decomposition of high-temperature alpha-Fe2Si5 phase. The aging heat treatments have been carried out at various temperatures below the equilibrium eutectoid temperature for various durations in order to tune the size of the eutectoid product. Thermal properties of the samples were studied in the temperature range of 100-350 A degrees C. The microstructural investigations support the fact that the finest microstructure generated through the eutectoid decomposition of the alpha-Fe2Si5 metastable phase is responsible of the phonon scattering. The results suggest an opportunity to produce bulk iron silicide alloys with reduced thermal conductivity in order to enhance its thermoelectric performance.