454 resultados para Polyacrylic acid polymers
Resumo:
Recent single molecule experiments have suggested the existence of a photochemical funnel in the photophysics of conjugated polymers, like poly[2-methoxy-5-(2'-ethylhexyl)oxy-1,4-phenylenevinylene] (MEH-PPV). The funnel is believed to be a consequence of the presence of conformational or chemical defects along the polymer chain and efficient non-radiative energy transfer among different chromophore segments. Here we address the effect of the excitation energy dynamics on the photophysics of PPV. The PPV chain is modeled as a polymer with the length distribution of chromophores given either by a Gaussian or by a Poisson distribution. We observe that the Poisson distribution of the segment lengths explains the photophysics of PPV better than the Gaussian distribution. A recently proposed version of an extended particle-in-a-box' model is used to calculate the exciton energies and the transition dipole moments of the chromophores, and a master equation to describe the excitation energy transfer among different chromophores. The rate of energy transfer is assumed to be given here, as a first approximation, by the well-known Forster expression. The observed excitation population dynamics confirms the photochemical funneling of excitation energy from shorter to longer chromophores of the polymer chain. The time scale of spectral shift and energy transfer for our model polymer, with realistic values of optical parameters, is in the range of 200-300 ps. We find that the excitation energy may not always migrate towards the longest chromophore segments in the polymer chain as the efficiency of energy transfer between chromophores depends on the separation distance between the two and their relative orientation.
Resumo:
Single crystals of a symmetrically substituted molecule, 1,3,5-triazine-2,4,6-triaminehexaacetic acid, (TTHA) and its Ca2+ salt have been synthesized, the analysis of which reveals the existence of novel channel type cavities and helical packing organizations in the crystals.
Resumo:
L-Lysyl-L-glutamic acid dihydrate, C11N3O5H21·2H2O, crystallizes in the monoclinic space group P21 with a = 12.474(2), b = 5.020(1), c = 13.157(2) Å, β= 114.69(1)° and Z = 2. The crystal structure was solved by direct methods and refined to an R value of 0.037 using full matrix least-squares method. The molecule exists as a double zwitterion with both the amino and carboxyl groups ionised. The peptide has a folded conformation with its Lys residue trans and Glu residue gauche−gauche+. The side chains of the Lys and Glu residues correspond to all trans and folded (g−g−g−) conformations respectively. The terminal carboxyl group forms hydrogen bonds with the ξ-amino group of the lysine side chain. The head-to-tail interaction often seen in peptide crystals is absent in the present structure. In the extended crystal structure water molecules form channels along the b direction and are enclosed within helically arranged hydrogen bonds formed by the lysine side chain and the peptide backbone.
Resumo:
The potassium salt of 3-methoxy and 3,5-dimethoxy benzoic acids undergoes deprotonation at the position para to the carboxylate group selectively when treated with LIC-KOR in THF at -78 degrees C and it has been extended to the synthesis of 3,5-dimethoxy-4-methyl benzoic acid. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
Charge density analysis from both experimental and theoretical points of view on two molecular complexes: one is formed between nicotinamide and salicylic acid, and the other formed between nicotinamide and oxalic acid brings out the quantitative topological features to distinguish a cocrystal from a salt.
Resumo:
Thermal degradation of copolyurethanes based on hydroxyl terminated polybutadiene (HTPB) and poly(12-hydroxy stearic acid-co-TMP) ester polyol (PEP) with varying compositions has been studied by thermo-gravimetric and pyrolysis-GC techniques. The copolyurethanes were found to decompose in multiple stages and the kinetic parameters were found to be dependent on the method of their evaluation. The activation energy for the initial stage of decomposition was found to increase, and for the main stage decreases with the increase in PEP content. The pyrolysis-GC studies on the ammonium perchlorate filled copolyurethanes (solid propellants) showed that the major products during the pyrolysis were C-2, C-3 hydrocarbons and butadiene. The amount of C-2 fraction in the pyrolyslate increased with solid loading, as well as with the HTPB content in the copolyurethanes. A linear relationship apparently exists between the amount of C-2 fraction and the burn rates of the solid propellants. (C) 2000 Elsevier Science Ltd. All rights reserved.
Resumo:
The utility of rice husk as an adsorbent for metal ions such as iron, zinc and copper from acid mine water was assessed. The adsorption isotherms exhibited Langmuirian behavior and were endothermic in nature. The free energy values for adsorption of the chosen metal ions onto rice husk were found to be highly negative attesting to favorable interaction. Over 99% Fe3+, 98% of Fe2+ and Zn2+ and 95% Cu2+ uptake was achieved from acid mine water, with a concomitant increase in the pH value by two units using rice husk. The remediation studies carried out on acid mine water and simulated acid mine water pretreated with rice husk indicated successful growth of Desulfotomaculum nigrificans (D. nigrificans). The amount of sulphate bioreduction in acid mine water at an initial pH of 5.3 was enhanced by D. nigrificans from 21% to 40% in the presence of rice husk filtrate supplemented with carbon and nitrogen. In simulated acid mine water with fortified husk filtrate, the sulphate reduction was even more extensive, with an enhancement to 73%. Concurrently, almost 90% Fe2+, 89% Zn2+ and 75% Cu2+ bioremoval was attained from simulated acid mine water. Metal adsorption by rice husk was confirmed in desorption experiments in which almost complete removal of metal ions from the rice husk was achieved after two elutions using 1 M HCl. The possible mechanisms of metal ion adsorption onto rice husk and sulphate reduction using D. nigrificans are discussed.