428 resultados para Electrical relaxation
Resumo:
We propose and demonstrate a technique for electrical detection of polarized spins in semiconductors in zero applied magnetic fields. Spin polarization is generated by optical injection using circularly polarized light which is modulated rapidly using an electro-optic cell. The modulated spin polarization generates a weak time-varying magnetic field which is detected by a sensitive radio-frequency coil. Using a calibrated pickup coil and amplification electronics, clear signals were obtained for bulk GaAs and Ge samples from which an optical spin orientation efficiency of 4.8% could be determined for Ge at 1342 nm excitation wavelength. In the presence of a small external magnetic field, the signal decayed according to the Hanle effect, from which a spin lifetime of 4.6 +/- 1.0 ns for electrons in bulk Ge at 127 K was extracted.
Resumo:
Titanium dioxide (TiO(2)) and silicon dioxide (SiO(2)) thin films and their mixed films were synthesized by the sol-gel spin coating method using titanium tetra isopropoxide (TTIP) and tetra ethyl ortho silicate (TEOS) as the precursor materials for TiO(2) and SiO(2) respectively. The pure and composite films of TiO(2) and SiO(2) were deposited on glass and silicon substrates. The optical properties were studied for different compositions of TiO(2) and SiO(2) sols and the refractive index and optical band gap energies were estimated. MOS capacitors were fabricated using TiO(2) films on p-silicon (1 0 0) substrates. The current-voltage (I-V) and capacitance-voltage (C-V) characteristics were studied and the electrical resistivity and dielectric constant were estimated for the films annealed at 200 degrees C for their possible use in optoelectronic applications. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Dense (Ba1―xLax)2In2O5+x (BLIO) electrolytes with different compositions (x = 0.4, 0.5, 0.6) were fabricated using powders obtained by the Pechini method. The formation of BLIO powders was investigated by using X-ray diffraction and scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy. The calcination temperature and time were optimized. The sintered (Ba1―xLax)2In2O5+x electrolytes showed a relative density greater than ∼97%, and the major phase of three electrolyte compositions was indexed as a cubic perovskite. The electrical conductivity of BLIO ceramics at elevated temperatures in air was measured by ac-impedance spectroscopy. The activation energies for conduction in BLIO were 102 kJ mol―1 between 473 and 666 K and 118 kJ mol―1 between 769 and 873 K, which are comparable to that for 8 mol % yttria-stabilized cubic zirconia. Mixed-potential gas sensors utilizing BLIO-based electrolytes exhibited good sensitivity to different CO concentrations from ∼100 to ∼500 ppm and excellent selectivity to methane at around 873 K.
Resumo:
Epitaxial films of La4BaCu5O13+δ and La4BaCu4NiO13+δ oxides are grown with a-b plane parallel to (100) of LaAlO3 and SrTiO3 by pulsed-laser deposition. The conductivity measurements performed along the c direction using LaNiO3 as the electrode show metallic behavior whereas they show semiconducting behavior in the a-b plane. Anisotropic transport property of these thin films is explained on the basis of nearly 180° connected Cu–O–Cu chains with an average Cu–O distance of 1.94 Å along the c direction and nearly 180° and 90° connected Cu–O–Cu chains in the a-b plane with short and long Cu–O distances ranging from 1.863 to 2.303 Å. YBa2Cu3O7−x has been grown along (00l) on La4BaCu5O13+δ and shows a Tc of 88 K.
Resumo:
Radially-homogeneous and single-phase InAsxSb(1−x) crystals, up to 5.0 at. % As concentration, have been grown using the rotatory Bridgman method. Single crystallinity has been confirmed by x-ray and electron diffraction studies. Infrared transmission spectra show a continuous decrease in optical energy gap with the increase of arsenic content in InSb. The measured values of mobility and carrier density at room temperature (for x = .05) are 5.6×104 cm2/V s and 2.04×1016 cm−3, respectively.
Resumo:
An interesting topic for quite some time is an intermediate phase observed in chalcogenide glasses, which is related to network connectivity and rigidity. This phenomenon is exhibited by Si-Te-In glasses also. It has been addressed here by carrying out detailed thermal investigations by using Alternating Differential Scanning Calorimetry technique. An effort has also been made to determine the stability of these glasses using the data obtained from different thermodynamic quantities and crystallization kinetics of these glasses. Electrical switching behavior by recording I-V characteristics and variation of switching voltages with indium composition have been studied in these glasses for phase change memory applications. (C) 2011 Elsevier Inc. All rights reserved.