348 resultados para Dynamic prediction
Resumo:
The study focuses on probabilistic assessment of the internal seismic stability of reinforced soil structures (RSS) subjected to earthquake loading in the framework of the pseudo-dynamic method. In the literature, the pseudo-static approach has been used to compute reliability indices against the tension and pullout failure modes, and the real dynamic nature of earthquake accelerations cannot be considered. The work presented in this paper makes use of the horizontal and vertical sinusoidal accelerations, amplification of vibrations, shear wave and primary wave velocities and time period. This approach is applied to quantify the influence of the backfill properties, geosynthetic reinforcement and characteristics of earthquake ground motions on reliability indices in relation to the tension and pullout failure modes. Seismic reliability indices at different levels of geosynthetic layers are determined for different magnitudes of seismic acceleration, soil amplification, shear wave and primary wave velocities. The results are compared with the pseudo-static method, and the significance of the present methodology for designing reinforced soil structures is discussed.
Resumo:
In this paper, we investigate the use of reinforcement learning (RL) techniques to the problem of determining dynamic prices in an electronic retail market. As representative models, we consider a single seller market and a two seller market, and formulate the dynamic pricing problem in a setting that easily generalizes to markets with more than two sellers. We first formulate the single seller dynamic pricing problem in the RL framework and solve the problem using the Q-learning algorithm through simulation. Next we model the two seller dynamic pricing problem as a Markovian game and formulate the problem in the RL framework. We solve this problem using actor-critic algorithms through simulation. We believe our approach to solving these problems is a promising way of setting dynamic prices in multi-agent environments. We illustrate the methodology with two illustrative examples of typical retail markets.
Resumo:
Many web sites incorporate dynamic web pages to deliver customized contents to their users. However, dynamic pages result in increased user response times due to their construction overheads. In this paper, we consider mechanisms for reducing these overheads by utilizing the excess capacity with which web servers are typically provisioned. Specifically, we present a caching technique that integrates fragment caching with anticipatory page pre-generation in order to deliver dynamic pages faster during normal operating situations. A feedback mechanism is used to tune the page pre-generation process to match the current system load. The experimental results from a detailed simulation study of our technique indicate that, given a fixed cache budget, page construction speedups of more than fifty percent can be consistently achieved as compared to a pure fragment caching approach.
Resumo:
The realistic estimation of the dynamic characteristics for a known set of loading conditions continues to be difficult despite many contributions in the past. The design of a machine foundation is generally made on the basis of limiting amplitude or resonant frequency. These parameters are in turn dependent on the dynamic characteristics of soil viz., the shear modulus/stiffness and damping. The work reported herein is an attempt to relate statistically the shear modulus of a soil to its resonant amplitude under a known set of static and dynamic loading conditions as well as wide ranging soil conditions. The two parameters have been statistically related with a good correlation coefficient and low standard error of estimate.
Resumo:
In the present paper, the constitutive model is proposed for cemented soils, in which the cementation component and frictional component are treated separately and then added together to get overall response. The modified Cam clay is used to predict the frictional resistance and an elasto-plastic strain softening model is proposed for the cementation component. The rectangular isotropic yield curve proposed by Vatsala (1995) for the bond component has been modified in order to account for the anisotropy generally observed in the case of natural soft cemented soils. In this paper, the model proposed is used to predict the experimental results of extension tests on the soft cemented soils whereas compression test results are presented elsewhere. The model predictions compare quite satisfactorily with the observed response. A few input parameters are required which are well defined and easily determinable and the model uses associated flow rule.
Resumo:
A new model for the structure, elastic properties and dynamics of foams and concentrated emulsions is presented, based on the idea of local regions lacking shear-rigidity in one or more directions which vary randomly through the medium. It is shown to lead naturally to slow (t(-1/2)) stress-relaxation, implying a piece of the dynamic modulus scaling with frequency omega as omega(1/2). Striking experimental confirmation of this prediction using a novel experimental technique is reported, and challenges for the theoretician are offered. This work was done in collaboration with Andrea Liu, Tom Mason, Hu Gang, and David Weitz [1].
Resumo:
Over the past decade, many powerful data mining techniques have been developed to analyze temporal and sequential data. The time is now fertile for addressing problems of larger scope under the purview of temporal data mining. The fourth SIGKDD workshop on temporal data mining focused on the question: What can we infer about the structure of a complex dynamical system from observed temporal data? The goals of the workshop were to critically evaluate the need in this area by bringing together leading researchers from industry and academia, and to identify promising technologies and methodologies for doing the same. We provide a brief summary of the workshop proceedings and ideas arising out of the discussions.
Resumo:
Dendritic rnicroenvironments defined by dynamic internal cavities of a dendrimer were probed through geometric isomerization of stilbene and azobenzene. A third-generation poly(alkyl aryl ether) dendrimer with hydrophilic exterior and hydrophobic interior was used as a reaction cavity in aqueous medium. The dynamic inner cavity sizes were varied by utilizing alkyl linkers that connect the branch junctures from ethyl to n-pentyl moiety (C(2)G(3)-C(5)G(3)). Dendrimers constituted with n-pentyl linker were found to afford higher solubilities of stilbene and azobenzene. Direct irradiation of trans-stilbene showed that C(5)G(3) and C(4)G(3) dendrimers afforded considerable phenanthrene formation, in addition to cis-stilbene, whereas C(3)G(3) and C(2)G(3) gave only cis-stilbene. An electron-transfer sensitized trans-cis isomerization, using cresyl violet perchlorate as the sensitizer, also led to similar results. Thermal isomerization of cis-azobenzene to trans-azobenzene within dendritic microenvironments revealed that the activation energy of the cis- to trans-isomer was increasing in the series C(5)G(3) < C(4)G(3) < C(3)G(3)
Resumo:
Avoidance of collision between moving objects in a 3-D environment is fundamental to the problem of planning safe trajectories in dynamic environments. This problem appears in several diverse fields including robotics, air vehicles, underwater vehicles and computer animation. Most of the existing literature on collision prediction assumes objects to be modelled as spheres. While the conservative spherical bounding box is valid in many cases, in many other cases, where objects operate in close proximity, a less conservative approach, that allows objects to be modelled using analytic surfaces that closely mimic the shape of the object, is more desirable. In this paper, a collision cone approach (previously developed only for objects moving on a plane) is used to determine collision between objects, moving in 3-D space, whose shapes can be modelled by general quadric surfaces. Exact collision conditions for such quadric surfaces are obtained and used to derive dynamic inversion based avoidance strategies.
Resumo:
A generalized power tracking algorithm that minimizes power consumption of digital circuits by dynamic control of supply voltage and the body bias is proposed. A direct power monitoring scheme is proposed that does not need any replica and hence can sense total power consumed by load circuit across process, voltage, and temperature corners. Design details and performance of power monitor and tracking algorithm are examined by a simulation framework developed using UMC 90-nm CMOS triple well process. The proposed algorithm with direct power monitor achieves a power savings of 42.2% for activity of 0.02 and 22.4% for activity of 0.04. Experimental results from test chip fabricated in AMS 350 nm process shows power savings of 46.3% and 65% for load circuit operating in super threshold and near sub-threshold region, respectively. Measured resolution of power monitor is around 0.25 mV and it has a power overhead of 2.2% of die power. Issues with loop convergence and design tradeoff for power monitor are also discussed in this paper.
Resumo:
This work focuses on the design of torsional microelectromechanical systems (MEMS) varactors to achieve highdynamic range of capacitances. MEMS varactors fabricated through the polyMUMPS process are characterized at low and high frequencies for their capacitance-voltage characteristics and electrical parasitics. The effect of parasitic capacitances on tuning ratio is studied and an equivalent circuit is developed. Two variants of torsional varactors that help to improve the dynamic range of torsional varactors despite the parasitics are proposed and characterized. A tuning ratio of 1:8, which is the highest reported in literature, has been obtained. We also demonstrate through simulations that much higher tuning ratios can be obtained with the designs proposed. The designs and experimental results presented are relevant to CMOS fabrication processes that use low resistivity substrate. (C) 2012 Society of Photo-Optical Instrumentation Engineers (SPIE). DOI: 10.1117/1.JMM.11.1.013006]
Resumo:
The importance of air bearing design is growing in engineering. As the trend to precision and ultra precision manufacture gains pace and the drive to higher quality and more reliable products continues, the advantages which can be gained from applying aerostatic bearings to machine tools, instrumentation and test rigs is becoming more apparent. The inlet restrictor design is significant for air bearings because it affects the static and dynamic performance of the air bearing. For instance pocketed orifice bearings give higher load capacity as compared to inherently compensated orifice type bearings, however inherently compensated orifices, also known as laminar flow restrictors are known to give highly stable air bearing systems (less prone to pneumatic hammer) as compared to pocketed orifice air bearing systems. However, they are not commonly used because of the difficulties encountered in manufacturing and assembly of the orifice designs. This paper aims to analyse the static and dynamic characteristics of inherently compensated orifice based flat pad air bearing system. Based on Reynolds equation and mass conservation equation for incompressible flow, the steady state characteristics are studied while the dynamic state characteristics are performed in a similar manner however, using the above equations for compressible flow. Steady state experiments were also performed for a single orifice air bearing and the results are compared to that obtained from theoretical studies. A technique to ease the assembly of orifices with the air bearing plate has also been discussed so as to make the manufacturing of the inherently compensated bearings more commercially viable. (c) 2012 Elsevier Inc. All rights reserved.
Resumo:
This work focuses on the formulation of an asymptotically correct theory for symmetric composite honeycomb sandwich plate structures. In these panels, transverse stresses tremendously influence design. The conventional 2-D finite elements cannot predict the thickness-wise distributions of transverse shear or normal stresses and 3-D displacements. Unfortunately, the use of the more accurate three-dimensional finite elements is computationally prohibitive. The development of the present theory is based on the Variational Asymptotic Method (VAM). Its unique features are the identification and utilization of additional small parameters associated with the anisotropy and non-homogeneity of composite sandwich plate structures. These parameters are ratios of smallness of the thickness of both facial layers to that of the core and smallness of 3-D stiffness coefficients of the core to that of the face sheets. Finally, anisotropy in the core and face sheets is addressed by the small parameters within the 3-D stiffness matrices. Numerical results are illustrated for several sample problems. The 3-D responses recovered using VAM-based model are obtained in a much more computationally efficient manner than, and are in agreement with, those of available 3-D elasticity solutions and 3-D FE solutions of MSC NASTRAN. (c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
South peninsular India experiences a large portion of the annual rainfall during the northeast monsoon season (October to December). In this study, the facets of diurnal, intra-seasonal and inter-annual variability of the northeast monsoon rainfall (the NEMR) over India have been examined. The analysis of satellite derived hourly rainfall reveals that there are distinct features of diurnal variation over the land and oceans during the season. Over the land, rainfall peaks during the late afternoon/evening, while over the oceans an early morning peak is observed. The harmonic analysis of hourly data reveals that the amplitude and variance are the largest over south peninsular India. The NEMR also exhibits significant intra-seasonal variability on a 20-40 day time scale. Analysis also shows significant northward propagation of the maximum cloud zone from south of equator to the south peninsula during the season. The NEMR exhibits large inter-annual variability with the co-efficient of variation (CV) of 25%. The positive phases of ENSO and the Indian Ocean Dipole (IOD) are conducive for normal to above normal rainfall activity during the northeast monsoon. There are multi-decadal variations in the statistical relationship between ENSO and the NEMR. During the period 2001-2010 the statistical relationship between ENSO and the NEMR has significantly weakened. The analysis of seasonal rainfall hindcasts for the period 1960-2005 produced by the state-of-the-art coupled climate models, ENSEMBLES, reveals that the coupled models have very poor skill in predicting the inter-annual variability of the NEMR. This is mainly due to the inability of the ENSEMBLES models to simulate the positive relationship between ENSO and the NEMR correctly. Copyright (C) 2012 Royal Meteorological Society