319 resultados para D-Symmetric Operators
Resumo:
For the first time, two units of KTA have been linked to three units of cyst-di-OMe. The reaction is noteworthy since it involves the formation of six amide bonds leading to a three-fold symmetric 23-cyclophane (3) harboring a cluster of three S-S bridges. The major product is a di-imide (4), arising from the interaction of a cystine NH with a neighbouring activated ester. A third reaction of tethering KTA with a single cyst-di-OMe unit afforded the flexible compound 6 and, with benzidine, the novel linker directed 7 with orthogonally disposed anchor modules.
Resumo:
This paper presents a novel, soft computing based solution to a complex optimal control or dynamic optimization problem that requires the solution to be available in real-time. The complexities in this problem of optimal guidance of interceptors launched with high initial heading errors include the more involved physics of a three dimensional missile-target engagement, and those posed by the assumption of a realistic dynamic model such as time-varying missile speed, thrust, drag and mass, besides gravity, and upper bound on the lateral acceleration. The classic, pure proportional navigation law is augmented with a polynomial function of the heading error, and the values of the coefficients of the polynomial are determined using differential evolution (DE). The performance of the proposed DE enhanced guidance law is compared against the existing conventional laws in the literature, on the criteria of time and energy optimality, peak lateral acceleration demanded, terminal speed and robustness to unanticipated target maneuvers, to illustrate the superiority of the proposed law. (C) 2013 Elsevier B. V. All rights reserved.
Resumo:
In this work, we consider two-dimensional (2-D) binary channels in which the 2-D error patterns are constrained so that errors cannot occur in adjacent horizontal or vertical positions. We consider probabilistic and combinatorial models for such channels. A probabilistic model is obtained from a 2-D random field defined by Roth, Siegel and Wolf (2001). Based on the conjectured ergodicity of this random field, we obtain an expression for the capacity of the 2-D non-adjacent-errors channel. We also derive an upper bound for the asymptotic coding rate in the combinatorial model.
Resumo:
This work presents novel achievable schemes for the 2-user symmetric linear deterministic interference channel with limited-rate transmitter cooperation and perfect secrecy constraints at the receivers. The proposed achievable scheme consists of a combination of interference cancelation, relaying of the other user's data bits, time sharing, and transmission of random bits, depending on the rate of the cooperative link and the relative strengths of the signal and the interference. The results show, for example, that the proposed scheme achieves the same rate as the capacity without the secrecy constraints, in the initial part of the weak interference regime. Also, sharing random bits through the cooperative link can achieve a higher secrecy rate compared to sharing data bits, in the very high interference regime. The results highlight the importance of limited transmitter cooperation in facilitating secure communications over 2-user interference channels.
Resumo:
We consider ZH and WH production at the Large Hadron Collider, where the Higgs decays to a b (b) over bar pair. We use jet substructure techniques to reconstruct the Higgs boson and construct angular observables involving leptonic decay products of the vector bosons. These efficiently discriminate between the tensor structure of the HVV vertex expected in the Standard Model and that arising from possible new physics, as quantified by higher dimensional operators. This can then be used to examine the CP nature of the Higgs as well as CP mixing effects in the HZZ and HWW vertices separately. (C) 2014 Elsevier B.V.
Resumo:
This study considers linear filtering methods for minimising the end-to-end average distortion of a fixed-rate source quantisation system. For the source encoder, both scalar and vector quantisation are considered. The codebook index output by the encoder is sent over a noisy discrete memoryless channel whose statistics could be unknown at the transmitter. At the receiver, the code vector corresponding to the received index is passed through a linear receive filter, whose output is an estimate of the source instantiation. Under this setup, an approximate expression for the average weighted mean-square error (WMSE) between the source instantiation and the reconstructed vector at the receiver is derived using high-resolution quantisation theory. Also, a closed-form expression for the linear receive filter that minimises the approximate average WMSE is derived. The generality of framework developed is further demonstrated by theoretically analysing the performance of other adaptation techniques that can be employed when the channel statistics are available at the transmitter also, such as joint transmit-receive linear filtering and codebook scaling. Monte Carlo simulation results validate the theoretical expressions, and illustrate the improvement in the average distortion that can be obtained using linear filtering techniques.
Resumo:
The explicit description of homogeneous operators and localization of a Hilbert module naturally leads to the definition of a class of Cowen-Douglas operators possessing a flag structure. These operators are irreducible. We show that the flag structure is rigid in the sense that the unitary equivalence class of the operator and the flag structure determine each other. We obtain a complete set of unitary invariants which are somewhat more tractable than those of an arbitrary operator in the Cowen-Douglas class. (C) 2014 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
Resumo:
We investigate the electronic properties of Germanane and analyze its importance as 2-D channel material in switching devices. Considering two types of morphologies, namely, chair and boat, we study the real band structure, the effective mass variation, and the complex band structure of unstrained Germanane by density-functional theory. The chair morphology turns out to be a more effective channel material for switching devices than the boat morphology. Furthermore, we study the effect of elastic strain, van der Waals force, and vertical electric field on these band structure properties. Due to its very low effective mass with relatively high-energy bandgap, in comparison with the other 2-D materials, Germanane appears to provide superior performance in switching device applications.
Resumo:
Single crystal X-ray structural analysis of a septanoside, namely, n-pentyl-2-chloro-2-deoxy sept-3-uloside (1) provides many finer details of the molecular structure, in addition to its preferred twist-chair conformation, namely, (TC3,4)-T-5,6 conformation. Structural analysis reveals a dense network of O-H...O, C-H...O and van der Waals interactions that stabilize interdigitized, planar bi-layer structure of the crystal lattice. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Motivated by several recent experimental observations that vitamin-D could interact with antigen presenting cells (APCs) and T-lymphocyte cells (T-cells) to promote and to regulate different stages of immune response, we developed a coarse grained but general kinetic model in an attempt to capture the role of vitamin-D in immunomodulatory responses. Our kinetic model, developed using the ideas of chemical network theory, leads to a system of nine coupled equations that we solve both by direct and by stochastic (Gillespie) methods. Both the analyses consistently provide detail information on the dependence of immune response to the variation of critical rate parameters. We find that although vitamin-D plays a negligible role in the initial immune response, it exerts a profound influence in the long term, especially in helping the system to achieve a new, stable steady state. The study explores the role of vitamin-D in preserving an observed bistability in the phase diagram (spanned by system parameters) of immune regulation, thus allowing the response to tolerate a wide range of pathogenic stimulation which could help in resisting autoimmune diseases. We also study how vitamin-D affects the time dependent population of dendritic cells that connect between innate and adaptive immune responses. Variations in dose dependent response of anti-inflammatory and pro-inflammatory T-cell populations to vitamin-D correlate well with recent experimental results. Our kinetic model allows for an estimation of the range of optimum level of vitamin-D required for smooth functioning of the immune system and for control of both hyper-regulation and inflammation. Most importantly, the present study reveals that an overdose or toxic level of vitamin-D or any steroid analogue could give rise to too large a tolerant response, leading to an inefficacy in adaptive immune function.
Resumo:
Precise experimental implementation of unitary operators is one of the most important tasks for quantum information processing. Numerical optimization techniques are widely used to find optimized control fields to realize a desired unitary operator. However, finding high-fidelity control pulses to realize an arbitrary unitary operator in larger spin systems is still a difficult task. In this work, we demonstrate that a combination of the GRAPE algorithm, which is a numerical pulse optimization technique, and a unitary operator decomposition algorithm Ajoy et al., Phys. Rev. A 85, 030303 (2012)] can realize unitary operators with high experimental fidelity. This is illustrated by simulating the mirror-inversion propagator of an XY spin chain in a five-spin dipolar coupled nuclear spin system. Further, this simulation has been used to demonstrate the transfer of entangled states from one end of the spin chain to the other end.
Resumo:
We present detailed results from a molecular dynamics (MD) simulation of phase-separation kinetics in polymer mixtures. Our MD simulations naturally incorporate hydrodynamic effects. We find that polymeric phase separation (with dynamically symmetric components) is in the same universality class as segregation of simple fluids: the degree of polymerization only slows down the segregation kinetics. For d = 2 polymeric fluids, the domain growth law is L(t) similar to t(phi) with phi showing a crossover from 1/3 -> 1/2 -> 2/3. For d = 3 polymeric fluids, we see the crossover phi = 1/3 -> 1. Our MD simulations do not yet access the inertial hydrodynamic regime (with L similar to t(2/3)) of phase separation in 3-d fluids. (C) 2014 AIP Publishing LLC.
Resumo:
A pair of commuting operators (S,P) defined on a Hilbert space H for which the closed symmetrized bidisc Gamma = {(z(1) + z(2), z(1)z(2)) : vertical bar z(1)vertical bar <= 1, vertical bar z(2)vertical bar <= 1} subset of C-2 is a spectral set is called a Gamma-contraction in the literature. A Gamma-contraction (S, P) is said to be pure if P is a pure contraction, i.e., P*(n) -> 0 strongly as n -> infinity Here we construct a functional model and produce a set of unitary invariants for a pure Gamma-contraction. The key ingredient in these constructions is an operator, which is the unique solution of the operator equation S - S*P = DpXDp, where X is an element of B(D-p), and is called the fundamental operator of the Gamma-contraction (S, P). We also discuss some important properties of the fundamental operator.
Resumo:
The correlation clustering problem is a fundamental problem in both theory and practice, and it involves identifying clusters of objects in a data set based on their similarity. A traditional modeling of this question as a graph theoretic problem involves associating vertices with data points and indicating similarity by adjacency. Clusters then correspond to cliques in the graph. The resulting optimization problem, Cluster Editing (and several variants) are very well-studied algorithmically. In many situations, however, translating clusters to cliques can be somewhat restrictive. A more flexible notion would be that of a structure where the vertices are mutually ``not too far apart'', without necessarily being adjacent. One such generalization is realized by structures called s-clubs, which are graphs of diameter at most s. In this work, we study the question of finding a set of at most k edges whose removal leaves us with a graph whose components are s-clubs. Recently, it has been shown that unless Exponential Time Hypothesis fail (ETH) fails Cluster Editing (whose components are 1-clubs) does not admit sub-exponential time algorithm STACS, 2013]. That is, there is no algorithm solving the problem in time 2 degrees((k))n(O(1)). However, surprisingly they show that when the number of cliques in the output graph is restricted to d, then the problem can be solved in time O(2(O(root dk)) + m + n). We show that this sub-exponential time algorithm for the fixed number of cliques is rather an exception than a rule. Our first result shows that assuming the ETH, there is no algorithm solving the s-Club Cluster Edge Deletion problem in time 2 degrees((k))n(O(1)). We show, further, that even the problem of deleting edges to obtain a graph with d s-clubs cannot be solved in time 2 degrees((k))n(O)(1) for any fixed s, d >= 2. This is a radical contrast from the situation established for cliques, where sub-exponential algorithms are known.
Resumo:
Edge cracked specimens have been widely utilized for fracture testing. Edge cracked semicircular disk (ECSD) specimen has now been well characterized with regard to its form factor and weight function. This paper presents a modified semicircular ring version of this specimen to enhance the form factor in general while retaining other desirable features. The efficacy of the modified design is proved by combining theory of elasticity solutions with finite element results to arrive at the optimum design geometry. New insights emerging from this work are used to theoretically re-examine the arch-tension and the four-point bend specimens. (C) 2014 Elsevier Ltd. All rights reserved.