363 resultados para fracture network
Resumo:
With ever increasing network speed, scalable and reliable detection of network port scans has become a major challenge. In this paper, we present a scalable and flexible architecture and a novel algorithm, to detect and block port scans in real time. The proposed architecture detects fast scanners as well as stealth scanners having large inter-probe periods. FPGA implementation of the proposed system gives an average throughput of 2 Gbps with a system clock frequency of 100 MHz on Xilinx Virtex-II Pro FPGA. Experimental results on real network trace show the effectiveness of the proposed system in detecting and blocking network scans with very low false positives and false negatives.
Resumo:
We consider the problem of optimal routing in a multi-stage network of queues with constraints on queue lengths. We develop three algorithms for probabilistic routing for this problem using only the total end-to-end delays. These algorithms use the smoothed functional (SF) approach to optimize the routing probabilities. In our model all the queues are assumed to have constraints on the average queue length. We also propose a novel quasi-Newton based SF algorithm. Policies like Join Shortest Queue or Least Work Left work only for unconstrained routing. Besides assuming knowledge of the queue length at all the queues. If the only information available is the expected end-to-end delay as with our case such policies cannot be used. We also give simulation results showing the performance of the SF algorithms for this problem.
Resumo:
Network Intrusion Detection Systems (NIDS) intercept the traffic at an organization's network periphery to thwart intrusion attempts. Signature-based NIDS compares the intercepted packets against its database of known vulnerabilities and malware signatures to detect such cyber attacks. These signatures are represented using Regular Expressions (REs) and strings. Regular Expressions, because of their higher expressive power, are preferred over simple strings to write these signatures. We present Cascaded Automata Architecture to perform memory efficient Regular Expression pattern matching using existing string matching solutions. The proposed architecture performs two stage Regular Expression pattern matching. We replace the substring and character class components of the Regular Expression with new symbols. We address the challenges involved in this approach. We augment the Word-based Automata, obtained from the re-written Regular Expressions, with counter-based states and length bound transitions to perform Regular Expression pattern matching. We evaluated our architecture on Regular Expressions taken from Snort rulesets. We were able to reduce the number of automata states between 50% to 85%. Additionally, we could reduce the number of transitions by a factor of 3 leading to further reduction in the memory requirements.
Resumo:
In this paper, we study duty cycling and power management in a network of energy harvesting sensor (EHS) nodes. We consider a one-hop network, where K EHS nodes send data to a destination over a wireless fading channel. The goal is to find the optimum duty cycling and power scheduling across the nodes that maximizes the average sum data rate, subject to energy neutrality at each node. We adopt a two-stage approach to simplify the problem. In the inner stage, we solve the problem of optimal duty cycling of the nodes, subject to the short-term power constraint set by the outer stage. The outer stage sets the short-term power constraints on the inner stage to maximize the long-term expected sum data rate, subject to long-term energy neutrality at each node. Albeit suboptimal, our solutions turn out to have a surprisingly simple form: the duty cycle allotted to each node by the inner stage is simply the fractional allotted power of that node relative to the total allotted power. The sum power allotted is a clipped version of the sum harvested power across all the nodes. The average sum throughput thus ultimately depends only on the sum harvested power and its statistics. We illustrate the performance improvement offered by the proposed solution compared to other naive schemes via Monte-Carlo simulations.
Resumo:
In this paper we demonstrate the use of multi-port network modeling to analyze one such antenna with fractal shaped parts. Based on simulation and experimental studies, it has been demonstrated that model can accurately predict the input characteristics of antennas with Minkowski geometry replacing a side micro strip square ring.
Resumo:
In this paper, we focus on increasing the throughput and diversity of network coded MIMO transmissions in bidirectional multi-pair wireless relay networks. All nodes have multi-antenna capability. Pairs of nodes want to exchange messages via a relay having multi-antenna and encoding/decoding capability. Nodes transmit their messages to the relay in the first (MAC) phase. The relay decodes all the messages and XORs them and broadcasts the XORed message in the second (BC) phase. We develop a generalized framework for bidirectional multi-pair multi-antenna wireless network coding, which models different MIMO transmission schemes including spatial multiplexing (V-BLAST), orthogonal STBC (OSTBC), and non-orthogonal STBC (NO-STBC) in a unified way. Enhanced throughputs are achieved by allowing all nodes to simultaneously transmit at their full rate. High diversity orders are achieved through the use of NO-STBCs, characterized by full rate and full transmit diversity. We evaluate and compare the performance of VBLAST, OSTBC, and NO-STBC schemes in one-dimensional 1-pair linear network (one pair of nodes and a relay) and two-dimensional 2-pair `cross' network (two pairs of nodes and a relay).
Resumo:
Recently, Ebrahimi and Fragouli proposed an algorithm to construct scalar network codes using small fields (and vector network codes of small lengths) satisfying multicast constraints in a given single-source, acyclic network. The contribution of this paper is two fold. Primarily, we extend the scalar network coding algorithm of Ebrahimi and Fragouli (henceforth referred to as the EF algorithm) to block network-error correction. Existing construction algorithms of block network-error correcting codes require a rather large field size, which grows with the size of the network and the number of sinks, and thereby can be prohibitive in large networks. We give an algorithm which, starting from a given network-error correcting code, can obtain another network code using a small field, with the same error correcting capability as the original code. Our secondary contribution is to improve the EF Algorithm itself. The major step in the EF algorithm is to find a least degree irreducible polynomial which is coprime to another large degree polynomial. We suggest an alternate method to compute this coprime polynomial, which is faster than the brute force method in the work of Ebrahimi and Fragouli.
Resumo:
with the development of large scale wireless networks, there has been short comings and limitations in traditional network topology management systems. In this paper, an adaptive algorithm is proposed to maintain topology of hybrid wireless superstore network by considering the transactions and individual network load. The adaptations include to choose the best network connection for the response, and to perform network Connection switching when network situation changes. At the same time, in terms of the design for topology management systems, aiming at intelligence, real-time, the study makes a step-by-step argument and research on the overall topology management scheme. Architecture for the adaptive topology management of hybrid wireless networking resources is available to user’s mobile device. Simulation results describes that the new scheme has outperformed the original topology management and it is simpler than the original rate borrowing scheme.
Resumo:
We study the performance of cognitive (secondary) users in a cognitive radio network which uses a channel whenever the primary users are not using the channel. The usage of the channel by the primary users is modelled by an ON-OFF renewal process. The cognitive users may be transmitting data using TCP connections and voice traffic. The voice traffic is given priority over the data traffic. We theoretically compute the mean delay of TCP and voice packets and also the mean throughput of the different TCP connections. We compare the theoretical results with simulations.
Resumo:
Effective network overload alleviation is very much essential in order to maintain security and integrity from the operational viewpoint of deregulated power systems. This paper aims at developing a methodology to reschedule the active power generation from the sources in order to manage the network congestion under normal/contingency conditions. An effective method has been proposed using fuzzy rule based inference system. Using virtual flows concept, which provides partial contributions/counter flows in the network elements is used as a basis in the proposed method to manage network congestions to the possible extent. The proposed method is illustrated on a sample 6 bus test system and on modified IEEE 39 bus system.
Resumo:
We report novel resistor grid network based space cloth for application in single and multi layer radar absorbers. The space cloth is analyzed and relations are derived for the sheet resistance in terms of the resistor in the grid network. Design curves are drawn using MATLAB and the space cloth is analyzed using HFSS™ software in a Salisbury screen for S, C and X bands. Next, prediction and simulation results for a three layer Jaumann absorber using square grid resistor network with a Radar Cross Section Reduction (RCSR) of -15 dB over C, X and Ku bands is reported. The simulation results are encouraging and have led to the fabrication of prototype broadband radar absorber and experimental work is under progress.
Resumo:
The objectives of this paper are to study the effects of plastic anisotropy and evolution in crystallographic texture with deformation on the ductile fracture behaviour of polycrystalline solids. To this end, numerical simulations of multiple void growth and interaction ahead of a notch tip are performed under mode I, plane strain, small scale yielding conditions using two approaches. The first approach is based on the Hill yield theory, while the second employs crystal plasticity constitutive equations and a Taylor-type homogenization in order to represent the ductile polycrystalline solid. The initial textures pertaining to continuous cast Al-Mg AA5754 sheets in recrystallized and cold rolled conditions are considered. The former is nearly-isotropic, while the latter displays pronounced anisotropy. The results indicate distinct changes in texture in the ligaments bridging the voids ahead of the notch tip with increase in load level which gives rise to retardation in porosity evolution and increase in tearing resistance for both materials.
Resumo:
Some bulk metallic glasses (BMGs) exhibit high crack initiation toughness due to shear band mediated plastic flow at the crack tip and yet do not display additional resistance to crack growth due to the lack of a microstructure. Thus, at crack initiation, the fracture behavior of BMGs transits from that of ductile alloys to that of brittle ceramics. In this paper, we attempt to understand the physics behind the characteristic length from the notch root at which this transition occurs, through testing of four-point bend specimens made of a nominally ductile Zr-based BMG in three different structural states. In the as-cast state, both symmetric (mode I) and asymmetric (mixed mode) bend specimens are tested. The process of shear band mediated plastic flow followed by crack initiation at the notch root was monitored through in situ imaging. Results show that stable crack growth occurs inside a dominant shear band through a distance of, similar to 60 mu m, irrespective of the structural state and mode mixity, before attaining criticality. Detailed finite element simulations show that this length corresponds to the distance from the notch root over which a positive hydrostatic stress gradient prevails. The mean ridge heights on fractured surfaces are found to correlate with the toughness of the BMG. The Argon and Salama model, which is based on the meniscus instability phenomenon at the notch root, is modified to explain the experimentally observed physics of fracture in ductile BMGs. (C) 2012 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Size independent fracture energy and size effect on fracture energy are the key concerns for characterization of concrete fracture. Although there have been inconsistencies in results, a consensual fact is that the fracture energy from a large specimen is size independent. The fracture energy is proportional to the size of the fracture process zone (FPZ). FPZ size increases with size of the specimen, but the rate of increase of FPZ size decreases with increase in specimen size 1] implying that rate of increase of fracture energy decreases with increase in specimen size, more appropriately with increase in un-cracked ligament length. The ratio of fracture energy to the un-cracked ligament length almost becomes a constant at larger un-cracked ligament lengths. In the present study an attempt is made to obtain size independent fracture energy from fracture energy release rate. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the present work, a discrete numerical approach is adopted to understand size effect and fracture behavior in concrete. First, a comparison is performed between 2D and 3D geometrically similar structures to analyze thickness effect. The study is supplemented with element failure pattern to analyze crack propagation. Further, changing influence of notch to depth ratio is analyzed by comparing 3D geometrically similar structures with different values of notch depth ratio. Finally, a statistical analysis is performed to understand the influence of structure size and heterogeneity on regression parameters namely Bf(t)' and D-0. (C) 2012 Elsevier Ltd. All rights reserved.