289 resultados para Mycobacterium chelonae


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Rv0805 gene in Mycobacterium tuberculosis encodes a metallophosphoesterase which shows cAMP-hydrolytic activity. Overexpression of Rv0805 has been used as a tool to lower intracellular cAMP levels and thereby elucidate the roles of cAMP in mycobacteria. Here we show that levels of cAMP in M. tuberculosis were lowered by only similar to 30% following overexpression of Rv0805, and transcript levels of a number of genes, which include those associated with virulence and the methyl citrate cycle, were altered. The genes that showed altered expression were distinct from those differentially regulated in a strain deleted for the cAMP-receptor protein (CRPMt), consistent with the relatively low dependence on cAMP of CRPMt binding to DNA. Using mutants of Rv0805 we show that the transcriptional signature of Rv0805 overexpression is a combination of catalysis-dependent and independent effects, and that the structurally flexible C-terminus of Rv0805 is crucial for the catalysis-independent effects of the protein. Our study demonstrates the dissociation of Rv0805 and cAMP-regulated gene expression, and reveals alternate functions for this phosphodiesterase from M. tuberculosis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this Letter, we report the structure activity relationship (SAR) studies on series of positional isomers of 5(6)-bromo-1-(phenyl)sulfonyl]-2-(4-nitrophenoxy)methyl]-1H-benzim idazoles derivatives 7(a-j) and 8(a j) synthesized in good yields and characterized by H-1 NMR, C-13 NMR and mass spectral analyses. The crystal structure of 7a was evidenced by X-ray diffraction study. The newly synthesized compounds were evaluated for their in vitro antibacterial activity against Staphylococcus aureus, (Gram-positive), Escherichia coil and Klebsiella pneumoniae (Gram-negative), antifungal activity against Candida albicans, Aspergillus flavus and Rhizopus sp. and antitubercular activity against Mycobacterium tuberculosis H37Rv, Mycobacterium smegmatis, Mycobacterium fortuitum and MDR-TB strains. The synthesized compounds displayed interesting antimicrobial activity. The compounds 7b, 7e and 7h displayed significant activity against Mycobacterium tuberculosis H37Rv strain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

C-di-GMP Bis-(3'-5')-cyclic-dimeric-guanosine monophosphate], a second messenger is involved in intracellular communication in the bacterial species. As a result several multi-cellular behaviors in both Gram-positive and Gram-negative bacteria are directly linked to the intracellular level of c-di-GMP. The cellular concentration of c-di-GMP is maintained by two opposing activities, diguanylate cyclase (DGC) and phosphodiesterase (PDE-A). In Mycobacterium smegmatis, a single bifunctional protein MSDGC-1 is responsible for the cellular concentration of c-di-GMP. A better understanding of the regulation of c-di-GMP at the genetic level is necessary to control the function of above two activities. In this work, we have characterized the promoter element present in msdgc-1 along with the + 1 transcription start site and identified the sigma factors that regulate the transcription of msdgc-1. Interestingly, msdgc-1 utilizes SigA during the initial phase of growth, whereas near the stationary phase SigB containing RNA polymerase takes over the expression of msdgc-1. We report here that the promoter activity of msdgc-1 increases during starvation or depletion of carbon source like glucose or glycerol. When msdgc-1 is deleted, the numbers of viable cells are similar to 10 times higher in the stationary phase in comparison to that of the wild type. We propose here that msdgc-1 is involved in the regulation of cell population density. (C) 2013 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The success of Mycobacterium tuberculosis as a deadly pathogen lies in its ability to survive under adverse conditions during pre- and post-infectious stages. The transcription process and the regulation of gene expression are central to the survival of the pathogen through the harsh conditions. Multiple sigma factors, transcription regulators, diverse two-component systems contribute in tailoring the events to meet the challenges faced by the pathogen. Although the machinery is conserved, many aspects of transcription and its regulation seem to be different in mycobacteria when compared to the other well-studied organisms. Here, we discuss salient aspects of transcription and its regulation in the context of distinct physiology of mycobacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The pathogenesis of Mycobacterium tuberculosis is associated with its ability to survive inside the human host and the bacteria use a variety of mechanism to evade the host's defence. A clearer understanding of the host pathogen interaction is needed to follow the pathogenicity and virulence. Recent advances in the study of inter and intra-cellular communication in bacteria had prompted us to study the role of quorum sensing in bacterial survival and pathogenicity. The cell cell communication in bacteria (quorum sensing) is mediated through the exchange of small molecules called as autoinducers that allow bacteria to modulate their gene expression in response to change in cell-population density. It is a coordinated response that confers multicellularity to a bacterial population in response to stress from external environment. Quorum sensing molecules are the global regulators and regulate a wide range of physiological processes including biofilm formation, motility, cell differentiation, long-term survival and many others. Many bacterial pathogens require quorum sensing to produce the virulence factors in response to host pathogen interaction. Here, we summarize our current understanding on small molecule signalling and their role in the bacterial persistence. New discoveries in these areas have enriched our knowledge on intracellular signalling and their role in the long-term survival of mycobacteria under nutrient starvation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The transcription from rrn and a number of other promoters is regulated by initiating ribonucleotides (iNTPs) and guanosine tetra/penta phosphate (p)ppGpp], either by strengthening or by weakening of the RNA polymerase (RNAP)-promoter interactions during initiation. Studies in Escherichia coli revealed the importance of a sequence termed discriminator, located between -10 and the transcription start site of the responsive promoters in this mode of regulation. Instability of the open complex at these promoters is attributed to the lack of stabilizing interactions between the suboptimal discriminator and the 1.2 region of sigma 70 (Sig70) in RNAP holoenzyme. We demonstrate a different pattern of interaction between the promoters and sigma A (SigA) of Mycobacterium tuberculosis to execute similar regulation. Instead of cytosine and methionine, thymine at three nucleotides downstream to -10 element and leucine 232 in SigA are found to be essential for iNTPs and pppGpp mediated response at the rrn and gyr promoters of the organism. The specificity of the interaction is substantiated by mutational replacements, either in the discriminator or in SigA, which abolish the nucleotide mediated regulation in vitro or in vivo. Specific yet distinct bases and the amino acids appear to have co-evolved' to retain the discriminator-sigma 1.2 region regulatory switch operated by iNTPs/pppGpp during the transcription initiation in different bacteria.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bacterial DNA topoisomerase I (topoI) catalyzes relaxation of negatively supercoiled DNA. The enzyme alters DNA topology through protein-operated DNA gate, switching between open and closed conformations during its reaction. We describe the mechanism of inhibition of Mycobacterium smegmatis and Mycobacterium tuberculosis topoI by monoclonal antibodies (mAbs) that bind with high affinity and inhibit at 10-50 nM concentration. Unlike other inhibitors of topoisomerases, the mAbs inhibited several steps of relaxation reaction, namely DNA binding, cleavage, strand passage, and enzyme-DNA dissociation. The enhanced religation of the cleaved DNA in presence of the mAb indicated closing of the enzyme DNA gate. The formation of enzyme-DNA heterocatenane in the presence of the mAbs as a result of closing the gate could be inferred by the salt resistance of the complex, visualized by atomic force microscopy and confirmed by fluorescence measurements. Locking the enzyme-DNA complex as a closed clamp restricted the movements of the DNA gate, affecting all of the major steps of the relaxation reaction. Enzyme trapped on DNA in closed clamp conformation formed roadblock for the elongating DNA polymerase. The unusual multistep inhibition of mycobacterial topoisomerases may facilitate lead molecule development, and the mAbs would also serve as valuable tools to probe the enzyme mechanism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Sialic acids form a large family of 9-carbon monosaccharides and are integral components of glycoconjugates. They are known to bind to a wide range of receptors belonging to diverse sequence families and fold classes and are key mediators in a plethora of cellular processes. Thus, it is of great interest to understand the features that give rise to such a recognition capability. Structural analyses using a non-redundant data set of known sialic acid binding proteins was carried out, which included exhaustive binding site comparisons and site alignments using in-house algorithms, followed by clustering and tree computation, which has led to derivation of sialic acid recognition principles. Although the proteins in the data set belong to several sequence and structure families, their binding sites could be grouped into only six types. Structural comparison of the binding sites indicates that all sites contain one or more different combinations of key structural features over a common scaffold. The six binding site types thus serve as structural motifs for recognizing sialic acid. Scanning the motifs against a non-redundant set of binding sites from PDB indicated the motifs to be specific for sialic acid recognition. Knowledge of determinants obtained from this study will be useful for detecting function in unknown proteins. As an example analysis, a genome-wide scan for the motifs in structures of Mycobacterium tuberculosis proteome identified 17 hits that contain combinations of the features, suggesting a possible function of sialic acid binding by these proteins.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

DNA gyrase is a type II topoisomerase that catalyzes the introduction of negative supercoils in the genomes of eubacteria. Fluoroquinolones (FQs), successful as drugs clinically, target the enzyme to trap the gyrase-DNA complex, leading to the accumulation of double-strand breaks in the genome. Mycobacteria are less susceptible to commonly used FQs. However, an 8-methoxy-substituted FQ, moxifloxacin (MFX), is a potent antimycobacterial, and a higher susceptibility of mycobacterial gyrase to MFX has been demonstrated. Although several models explain the mechanism of FQ action and gyrase-DNA-FQ interaction, the basis for the differential susceptibility of mycobacterial gyrase to various FQs is not understood. We have addressed the basis of the differential susceptibility of the gyrase and revisited the mode of action of FQs. We demonstrate that FQs bind both Escherichia coli and Mycobacterium tuberculosis gyrases in the absence of DNA and that the addition of DNA enhances the drug binding. The FQs bind primarily to the GyrA subunit of mycobacterial gyrase, while in E. coli holoenzyme is the target. The binding of MFX to GyrA of M. tuberculosis correlates with its effectiveness as a better inhibitor of the enzyme and its efficacy in cell killing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis continues to kill 1.4 million people annually. During the past 5 years, an alarming increase in the number of patients with multidrug-resistant tuberculosis and extensively drug-resistant tuberculosis has been noted, particularly in eastern Europe, Asia, and southern Africa. Treatment outcomes with available treatment regimens for drug-resistant tuberculosis are poor. Although substantial progress in drug development for tuberculosis has been made, scientific progress towards development of interventions for prevention and improvement of drug treatment outcomes have lagged behind. Innovative interventions are therefore needed to combat the growing pandemic of multidrug-resistant and extensively drug-resistant tuberculosis. Novel adjunct treatments are needed to accomplish improved cure rates for multidrug-resistant and extensively drug-resistant tuberculosis. A novel, safe, widely applicable, and more effective vaccine against tuberculosis is also desperately sought to achieve disease control. The quest to develop a universally protective vaccine for tuberculosis continues. So far, research and development of tuberculosis vaccines has resulted in almost 20 candidates at different stages of the clinical trial pipeline. Host-directed therapies are now being developed to refocus the anti-Mycobacterium tuberculosis-directed immune responses towards the host; a strategy that could be especially beneficial for patients with multidrug-resistant tuberculosis or extensively drug-resistant tuberculosis. As we are running short of canonical tuberculosis drugs, more attention should be given to host-directed preventive and therapeutic intervention measures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The association of a factors with the RNA polymerase dictates the expression profile of a bacterial cell. Major changes to the transcription profile are achieved by the use of multiple sigma factors that confer distinct promoter selectivity to the holoenzyme. The cellular concentration of a sigma factor is regulated by diverse mechanisms involving transcription, translation and post-translational events. The number of sigma factors varies substantially across bacteria. The diversity in the interactions between sigma factors also vary-ranging from collaboration, competition or partial redundancy in some cellular or environmental contexts. These interactions can be rationalized by a mechanistic model referred to as the partitioning of a space model of bacterial transcription. The structural similarity between different sigma/anti-sigma complexes despite poor sequence conservation and cellular localization reveals an elegant route to incorporate diverse regulatory mechanisms within a structurally conserved scaffold. These features are described here with a focus on sigma/anti-sigma complexes from Mycobacterium tuberculosis. In particular, we discuss recent data on the conditional regulation of sigma/anti-sigma factor interactions. Specific stages of M. tuberculosis infection, such as the latent phase, as well as the remarkable adaptability of this pathogen to diverse environmental conditions can be rationalized by the synchronized action of different a factors.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Mycobacteria harbor unique proteins that regulate protein lysine acylation in a cAMP-regulated manner. These lysine acyltransferases from Mycobacterium smegmatis (KATms) and Mycobacterium tuberculosis (KATmt) show distinctive biochemical properties in terms of cAMP binding affinity to the N-terminal cyclic nucleotide binding domain and allosteric activation of the C-terminal acyltransferase domain. Here we provide evidence for structural features in KATms that account for high affinity cAMP binding and elevated acyltransferase activity in the absence of cAMP. Structure-guided mutational analysis converted KATms from a cAMP-regulated to a cAMP-dependent acyltransferase and identified a unique asparagine residue in the acyltransferase domain of KATms that assists in the enzymatic reaction in the absence of a highly conserved glutamate residue seen in Gcn5-related N-acetyltransferase-like acyltransferases. Thus, we have identified mechanisms by which properties of similar proteins have diverged in two species of mycobacteria by modifications in amino acid sequence, which can dramatically alter the abundance of conformational states adopted by a protein.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Acidic region streaking (ARS) is one of the lacunae in two-dimensional gel electrophoresis (2DE) of bacterial proteome. This streaking is primarily caused by nucleic acid (NuA) contamination and poses major problem in the downstream processes like image analysis and protein identification. Although cleanup and nuclease digestion are practiced as remedial options, these strategies may incur loss in protein recovery and perform incomplete removal of NuA. As a result, ARS has remained a common observation across publications, including the recent ones. In this work, we demonstrate how ultrasound wave can be used to shear NuA in plain ice-cooled water, facilitating the elimination of ARS in the 2DE gels without the need for any additional sample cleanup tasks. In combination with a suitable buffer recipe, IEF program and frequent paper-wick changing approach, we are able to reproducibly demonstrate the production of clean 2DE gels with improved protein recovery and negligible or no ARS. We illustrate our procedure using whole cell protein extracts from two diverse organisms, Escherichia coli and Mycobacterium smegmatis. Our designed protocols are straightforward and expected to provide good 2DE gels without ARS, with comparable times and significantly lower cost.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Despite highly conserved core catalytic domains, members of the metallophosphoesterase (MPE) superfamily perform diverse and crucial functions ranging from nucleotide and nucleic acid metabolism to phospholipid hydrolysis. Unique structural elements outside of the catalytic core called ``cap domains'' are thought to provide specialization to these enzymes; however, no directed study has been performed to substantiate this. The cap domain of Rv0805, an MPE from Mycobacterium tuberculosis, is located C-terminal to its catalytic domain and is dispensable for the catalytic activity of this enzyme in vitro. We show here that this C-terminal extension (CTE) mediates in vivo localization of the protein to the cell membrane and cell wall as well as modulates expression levels of Rv0805 in mycobacteria. We also demonstrate that Rv0805 interacts with the cell wall of mycobacteria, possibly with the mycolyl-arabinogalactan-peptidoglycan complex, by virtue of its C terminus, a hitherto unknown property of this MPE. Using a panel of mutant proteins, we identify interactions between active site residues of Rv0805 and the CTE that determine its association with the cell wall. Finally, we show that Rv0805 and a truncated mutant devoid of the CTE produce different phenotypic effects when expressed in mycobacteria. Our study thus provides a detailed dissection of the functions of the cap domain of an MPE and suggests that the repertoire of cellular functions of MPEs cannot be understood without exploring the modulatory effects of these subdomains.