279 resultados para Infrared spectral
Resumo:
The tetrablock, roughly speaking, is the set of all linear fractional maps that map the open unit disc to itself. A formal definition of this inhomogeneous domain is given below. This paper considers triples of commuting bounded operators (A,B,P) that have the tetrablock as a spectral set. Such a triple is named a tetrablock contraction. The motivation comes from the success of model theory in another inhomogeneous domain, namely, the symmetrized bidisc F. A pair of commuting bounded operators (S,P) with Gamma as a spectral set is called a Gamma-contraction, and always has a dilation. The two domains are related intricately as the Lemma 3.2 below shows. Given a triple (A, B, P) as above, we associate with it a pair (F-1, F-2), called its fundamental operators. We show that (A,B,P) dilates if the fundamental operators F-1 and F-2 satisfy certain commutativity conditions. Moreover, the dilation space is no bigger than the minimal isometric dilation space of the contraction P. Whether these commutativity conditions are necessary, too, is not known. what we have shown is that if there is a tetrablock isometric dilation on the minimal isometric dilation space of P. then those commutativity conditions necessarily get imposed on the fundamental operators. En route, we decipher the structure of a tetrablock unitary (this is the candidate as the dilation triple) and a tertrablock isometry (the restriction of a tetrablock unitary to a joint invariant sub-space). We derive new results about r-contractions and apply them to tetrablock contractions. The methods applied are motivated by 11]. Although the calculations are lengthy and more complicated, they beautifully reveal that the dilation depends on the mutual relationship of the two fundamental operators, so that certain conditions need to be satisfied. The question of whether all tetrablock contractions dilate or not is unresolved.
Resumo:
A wavelet spectral finite element (WSFE) model is developed for studying transient dynamics and wave propagation in adhesively bonded composite joints. The adherands are formulated as shear deformable beams using the first order shear deformation theory (FSDT) to obtain accurate results for high frequency wave propagation. Equations of motion governing wave motion in the bonded beams are derived using Hamilton's principle. The adhesive layer is modeled as a line of continuously distributed tension/compression and shear springs. Daubechies compactly supported wavelet scaling functions are used to transform the governing partial differential equations from time domain to frequency domain. The dynamic stiffness matrix is derived under the spectral finite element framework relating the nodal forces and displacements in the transformed frequency domain. Time domain results for wave propagation in a lap joint are validated with conventional finite element simulations using Abaqus. Frequency domain spectrum and dispersion relation results are presented and discussed. The developed WSFE model yields efficient and accurate analysis of wave propagation in adhesively-bonded composite joints. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
We investigated the site response characteristics of Kachchh rift basin over the meizoseismal area of the 2001, Mw 7.6, Bhuj (NW India) earthquake using the spectral ratio of the horizontal and vertical components of ambient vibrations. Using the available knowledge on the regional geology of Kachchh and well documented ground responses from the earthquake, we evaluated the H/V curves pattern across sediment filled valleys and uplifted areas generally characterized by weathered sandstones. Although our HIV curves showed a largely fuzzy nature, we found that the hierarchical clustering method was useful for comparing large numbers of response curves and identifying the areas with similar responses. Broad and plateau shaped peaks of a cluster of curves within the valley region suggests the possibility of basin effects within valley. Fundamental resonance frequencies (f(0)) are found in the narrow range of 0.1-2.3 Hz and their spatial distribution demarcated the uplifted regions from the valleys. In contrary, low HIV peak amplitudes (A(0) = 2-4) were observed on the uplifted areas and varying values (2-9) were found within valleys. Compared to the amplification factors, the liquefaction indices (kg) were able to effectively indicate the areas which experienced severe liquefaction. The amplification ranges obtained in the current study were found to be comparable to those obtained from earthquake data for a limited number of seismic stations located on uplifted areas; however the values on the valley region may not reflect their true amplification potential due to basin effects. Our study highlights the practical usefulness as well as limitations of the HIV method to study complex geological settings as Kachchh. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Weak hydrogen bonds of the type C-H center dot center dot center dot X (X: N, O, S and halogens) have evoked considerable interest over the years, especially in the context of crystal engineering. However, association patterns of weak hydrogen bonds are generally difficult to characterize, and yet the identification of such patterns is of interest, especially in high throughput work or where single crystal X-ray analysis is difficult or impossible. To obtain structural information on such assemblies, we describe here a five step IR spectroscopic method that identifies supramolecular synthons in weak hydrogen bonded dimer assemblies, bifurcated systems, and p-electron mediated synthons. The synthons studied here contain C-H groups as hydrogen bond donors. The method involves: (i) identifying simple compounds/cocrystals/salts that contain the hydrogen bonded dimer synthon of interest or linear hydrogen bonded assemblies between the same functionalities; (ii) scanning infrared (IR) spectra of the compounds; (iii) identifying characteristic spectral differences between dimer and linear; (iv) assigning identified bands as marker bands for identification of the supramolecular synthon, and finally (v) identifying synthons in compounds whose crystal structures are not known. The method has been effectively implemented for assemblies involving dimer/linear weak hydrogen bonds in nitrobenzenes (C-H center dot center dot center dot O-NO), nitro-dimethylamino compounds (NMe2 center dot center dot center dot O2N), chalcones (C-H center dot center dot center dot O=C), benzonitriles (C-H center dot center dot center dot N C) and fluorobenzoic acids (C-H center dot center dot center dot F-C). Two other special cases of C-H center dot center dot center dot pi and N-H center dot center dot center dot pi synthons were studied in which the band shape of the C-H stretch in hydrocarbons and the N-H deformation in aminobenzenes was examined.
Resumo:
A new 2D NMR technique cited as CH-RES-TOCSY, for complete unraveling the spectra of enantiomers and for the measurement of structurally important C-HRDC sis reported. The spectral overlap and complexity of peaks were reduced by the blend of selective excitation and homo-decoupling. Differential values of C-H RDCs of enantiomers (R and S) are exploited to separate the enantiomeric peaks. The complete unraveling of the spectra of both the enantiomers is achieved by incorporating a TOCSY mixing blockprior to signal acquisition. The additional application of the method is demonstrated for the assignment of symmetric isomers. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Studies on the optical properties of InGaN alloy of relatively higher indium content are of potential interest to understand the effect of indium content on the optical band gap of epitaxial InGaN. We report the growth of self assembled non-polar high indium clusters of In0.55Ga0.45N over non-polar (11-20) a-plane In0.17Ga0.83N epilayer grown on a-plane (11-20) GaN/(1-102) r-plane sapphire substrate using plasma assisted molecular beam epitaxy (PAMBE). Such structures are potential candidates for high brightness LEDs emitting in longer wavelengths. The high resolution X-ray diffraction studies revealed the formation of two distinct compositions of InxGa1-xN alloys, which were further confirmed by photoluminescence studies. A possible mechanism for the formation of such structure was postulated which was supported with the results obtained by energy dispersive X-ray analysis. The structure hence grown when investigated for photo-detecting properties, showed sensitivity to both infrared and ultraviolet radiations due to the different composition of InGaN region. (C) 2015 Author(s).
Resumo:
Spectral elements are found to be extremely resourceful to study the wave propagation characteristics of structures at high frequencies. Most of the aerospace structures use honeycomb sandwich constructions. The existing spectral elements use single layer theories for a sandwich construction wherein the two face sheets vibrate together and this model is sufficient for low frequency excitations. At high frequencies, the two face sheets vibrate independently. The Extended Higher order SAndwich Plate theory (EHSaPT) is suitable for representing the independent motion of the face sheets. A 1D spectral element based on EHSaPT is developed in this work. The wave number and the wave speed characteristics are obtained using the developed spectral element. It is shown that the developed spectral element is capable of representing independent wave motions of the face sheets. The propagation speeds of a high frequency modulated pulse in the face sheets and the core of a honeycomb sandwich are demonstrated. Responses of a typical honeycomb sandwich beam to high frequency shock loads are obtained using the developed spectral element and the response match very well with the finite element results. It is shown that the developed spectral element is able to represent the flexibility of the core resulting into independent wave motions in the face sheets, for which a finite element method needs huge degrees of freedom. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A new triarylborane-aza-BODIPY conjugate is reported. The compound consists of two blue emissive dimesitylarylborane moieties and a near-infrared (NIR) emissive aza-BOIDPY core and shows panchromatic absorption spanning approximately 300-800 nm. DFT computational studies suggest limited electronic communication between the individual fluorophore units. Hence, the partial energy transfer from blue fluorophore triarylborane to NIR chromophore aza-BODIPY unit leads to a broad dual-emissive feature covering a large part of visible and NIR region. Furthermore, the broadband emissive compound can act as a selective sensor for fluoride anion as a result of fluorescence quenching response in both visible and NIR spectral regions.
Resumo:
It is by now clear that the infrared sector of quantum electrodynamics (QED) has an intriguingly complex structure. Based on earlier pioneering work on this subject, two of us recently proposed a simple modification of QED by constructing a generalization of the U(1) charge group of QED to the ``Sky'' group incorporating the well-known spontaneous Lorentz violation due to infrared photons, but still compatible in particular with locality (Balachandran and Vaidya, Eur Phys J Plus 128:118, 2013). It was shown that the ``Sky'' group is generated by the algebra of angle-dependent charges and a study of its superselection sectors has revealed a manifest description of spontaneous breaking of the Lorentz symmetry. We further elaborate this approach here and investigate in some detail the properties of charged particles dressed by the infrared photons. We find that Lorentz violation due to soft photons may be manifestly codified in an angle-dependent fermion mass, modifying therefore the fermion dispersion relations. The fact that the masses of the charged particles are not Lorentz invariant affects their spin content, and time dilation formulas for decays should also get corrections.
Resumo:
We present an analysis of the rate of sign changes in the discrete Fourier spectrum of a sequence. The sign changes of either the real or imaginary parts of the spectrum are considered, and the rate of sign changes is termed as the spectral zero-crossing rate (SZCR). We show that SZCR carries information pertaining to the locations of transients within the temporal observation window. We show duality with temporal zero-crossing rate analysis by expressing the spectrum of a signal as a sum of sinusoids with random phases. This extension leads to spectral-domain iterative filtering approaches to stabilize the spectral zero-crossing rate and to improve upon the location estimates. The localization properties are compared with group-delay-based localization metrics in a stylized signal setting well-known in speech processing literature. We show applications to epoch estimation in voiced speech signals using the SZCR on the integrated linear prediction residue. The performance of the SZCR-based epoch localization technique is competitive with the state-of-the-art epoch estimation techniques that are based on average pitch period.
Resumo:
For obtaining dynamic response of structure to high frequency shock excitation spectral elements have several advantages over conventional methods. At higher frequencies transverse shear and rotary inertia have a predominant role. These are represented by the First order Shear Deformation Theory (FSDT). But not much work is reported on spectral elements with FSDT. This work presents a new spectral element based on the FSDT/Mindlin Plate Theory which is essential for wave propagation analysis of sandwich plates. Multi-transformation method is used to solve the coupled partial differential equations, i.e., Laplace transforms for temporal approximation and wavelet transforms for spatial approximation. The formulation takes into account the axial-flexure and shear coupling. The ability of the element to represent different modes of wave motion is demonstrated. Impact on the derived wave motion characteristics in the absence of the developed spectral element is discussed. The transient response using the formulated element is validated by the results obtained using Finite Element Method (FEM) which needs significant computational effort. Experimental results are provided which confirms the need to having the developed spectral element for the high frequency response of structures. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
A new, phenoxo-bridged Cu-II dinuclear complex Cu-2(L)(2)(DMF)(2)] (1) has been obtained by employing the coumarin-assisted tridentate precursor, H2L, benzoic acid(7-hydroxy-4-methyl-2-oxo-2H-chromen-8-ylmethylene)-hydrazide]. Complex 1 has been systematically characterized by FTIR, UV-Vis, fluorescence and PR spectrometry. The single crystal X-ray diffraction analysis of 1 shows that the geometry around each copper ion is square pyramidal, comprising two enolato oxygen atoms belonging to different ligands (which assemble the dimer bridging the two metal centers), one imine-N and one phenolic-O atoms of the Schiff base and one oxygen atom from the DMF molecule. The temperature dependent magnetic interpretation agrees with the existence of weak ferromagnetic interactions between the bridging dinuclear Cu(II) ions. Both the ligand and complex 1 exhibit anti-mycobacterial activity and considerable efficacy towards M. tuberculosis H37Rv ATCC 27294 and M. tuberculosis H37Ra ATCC 25177 strains. The cytotoxicity study on human adenocarcinoma cell lines (MCF7) suggests that the ligand and complex 1 have potential anticancer properties. Molecular docking of H2L with the enoyl acyl carrier protein reductase of M. tuberculosis H37R(v) (PDB ID: 4U0K) is examined and the best docked pose of H2L shows one hydrogen bond with Thr196 (1.99 angstrom).
Resumo:
Branched Chain Amino Acids (BCAAs) are related to different aspects of diseases like pathogenesis, diagnosis and even prognosis. While in some diseases, levels of all the BCAAs are perturbed; in some cases, perturbation occurs in one or two while the rest remain unaltered. In case of ischemic heart disease, there is an enhanced level of plasma leucine and isoleucine but valine level remains unaltered. In `Hypervalinemia', valine is elevated in serum and urine, but not leucine and isoleucine. Therefore, identification of these metabolites and profiling of individual BCAA in a quantitative manner in body-fluid like blood plasma/serum have long been in demand. H-1 NMR resonances of the BCAAs overlap with each other which complicates quantification of individual BCAAs. Further, the situation is limited by the overlap of broad resonances of lipoprotein with the resonances of BCAAs. The widely used commercially available kits cannot differentially estimate the BCAAs. Here, we have achieved proper identification and characterization of these BCAAs in serum in a quantitative manner employing a Nuclear Magnetic Resonance-based technique namely T-2-edited Correlation Spectroscopy (COSY). This approach can easily be extended to other body fluids like bile, follicular fluids, saliva, etc.
Resumo:
We report the photoresponse of stacked graphene layers towards infrared radiation. Graphene is stacked in two configurations, namely, crossed and parallel layers. Raman analysis demonstrated a strong interaction among the stacked graphene layers. Graphene in the crossed configuration exhibited the presence of both negative and positive conductivities; however, other configurations of graphene exhibited positive conductivity only. The presence of negative photoconductivity is proposed to be due to oxygen or oxygen-related functional group absorbents that are trapped in between two monolayers of graphene and act as scattering centers for free carriers. An interesting trend is reported in differential conductivity when stacked layers are compared with multilayers and parallel-stacked graphene layers.
Resumo:
Motivated by multi-distribution divergences, which originate in information theory, we propose a notion of `multipoint' kernels, and study their applications. We study a class of kernels based on Jensen type divergences and show that these can be extended to measure similarity among multiple points. We study tensor flattening methods and develop a multi-point (kernel) spectral clustering (MSC) method. We further emphasize on a special case of the proposed kernels, which is a multi-point extension of the linear (dot-product) kernel and show the existence of cubic time tensor flattening algorithm in this case. Finally, we illustrate the usefulness of our contributions using standard data sets and image segmentation tasks.