263 resultados para GROWTH CHARTS
Resumo:
The structural and optical properties of semipolar (1 1 -2 2) GaN grown on m-plane (1 0 -1 0) sapphire substrates by molecular beam epitaxy were investigated. An in-plane orientation relationship was found to be 1 -1 0 0] GaN parallel to 1 2-1 0] sapphire and -1 -1 2 3] GaN parallel to 0 0 0 1] sapphire for semipolar GaN on m-plane sapphire substrates. The near band emission (NBE) was found at 3.432 eV, which is slightly blue shifted compared to the bulk GaN. The Raman E-2 (high) peak position observed at 569.1 cm(-1), which indicates that film is compressively strained. Schottky barrier height (phi(b)) and the ideality factor (eta) for the Au/semipolar GaN Schottky diode found to be 0.55 eV and 2.11, respectively obtained from the TE model.
Resumo:
The substrate effect on InN nanostructures grown by droplet epitaxy has been studied. InN nanostructures were fabricated on Si(111), silicon nitride/Si(111), AlN/Si(111) and Ge(100) substrates by droplet epitaxy using an RF plasma nitrogen source. The morphologies of InN nanostructures were investigated by field emission scanning electron microscopy (FESEM). The chemical bonding configurations of InN nanostructures were examined by x-ray photoelectron spectroscopy (XPS). Photoluminescence spectrum slightly blue shifted compared to the bulk InN, indicating a strong Burstein-Moss effect due to the presence of high electron concentration in the InN dots.
Resumo:
Lead telluride micro and nanostructures have been grown on silicon and glass substrates by a simple thermal evaporation of PbTe in high vacuum of 3 x 10(-5) mbar. Growth was carried out for two different distances between the evaporation source and the substrates. Synthesized products consist of nanorods and micro towers for 2.4 cm and 3.4 cm of distance between the evaporation source and the substrates respectively. X-ray diffraction and transmission electron microscopy studies confirmed crystalline nature of the nanorods and micro towers. Nanorods were grown by vapor solid mechanism. Each micro tower consists of nano platelets and is capped with spherical catalyst particle at their end, suggesting that the growth proceeds via vapor-liquid-solid (VLS) mechanism. EDS spectrum recorded on the tip of the micro tower has shown the presence of Pb and Te confirming the self catalytic VLS growth of the micro towers. These results open up novel synthesis methods for PbTe nano and microstructures for various applications.
Resumo:
Growth of high density germanium nanowires on Si substrates by electron beam evaporation (EBE) has been demonstrated using gold as catalyst. The germanium atoms are provided by evaporating germanium by electron beam evaporation (EBE) technique. Effect of substrate (growth) temperature and deposition time on the growth of nanowires has studied. The morphology of the nanowires was investigated by field emission scanning electron microscope (FESEM). It has been observed that a narrow temperature window from 380 degrees C to 480 degrees C is good for the nanowires growth as well as restriction on the maximum length of nanowires. It is also observed that high substrate temperature leading to the completely absence of nanowire growth.
Resumo:
Regular vaccinations with potent vaccine, in endemic countries and vaccination to live in non-endemic countries are the methods available to control foot-and-mouth disease. Selection of candidate vaccine strain is not only cumbersome but the candidate should grow well for high potency vaccine preparation. Alternative strategy is to generate an infectious cDNA of a cell culture-adapted virus and use the replicon for development of tailor-made vaccines. We produced a chimeric `O' virus in the backbone of Asia 1 and studied its characteristics. The chimeric virus showed high infectivity titre (>10(10)) in BHK 21 cell lines, revealed small plague morphology and there was no cross reactivity with antiserum against Asia I. The virus multiplies rapidly and reaches peak at 12 h post infection. The vaccine prepared with this virus elicited high antibody titres.
Resumo:
In this article we have demonstrated the influence of growth-temperature on the morphology and orientation of SnS films deposited by thermal evaporation technique. While increasing the growth-temperature, the morphology of SnS films changed from flakes-like nanocrystals to regular cubes, whereas their orientation shifted from <111> to <040> direction. The chemical composition of SnS films gradually changed from sulfur-rich to tin-rich with the increase of growth-temperature. The structural analyzes reveal that the crystal structure of SnS films probably changes from orthorhombic to tetragonal at the growth-temperature of about 410 degrees C. Raman studies show that SnS films grown at all temperatures consist of purely SnS phase, whereas the optical studies reveal that the direct optical bandgap of SnS films decreased with the increase of growth-temperature. From these results it has been emphasized that the morphology and orientation along with electrical and optical properties of nearly stoichiometric SnS films strongly depend on their growth-temperature.
Resumo:
A numerical model to study the growth of dendrites in a pure metal solidification process with an imposed rotational flow field is presented. The micro-scale features of the solidification are modeled by the well-known enthalpy technique. The effect of flow changing the position of the dendrite is captured by the Volume of Fluid (VOF) method. An imposed rigid-body rotational flow is found to gradually transform the dendrite into a globular microstructure. A parametric study is carried out for various angular velocities and the time for merger of dendrite arms is compared with the order estimate obtained from scaling.
Resumo:
The phenomenon of fatigue is commonly observed in majority of concrete structures and it is important to mathematically model it in order to predict their remaining life. An energy approach is adopted in this research by using the framework of thermodynamics wherein the dissipative phenomenon is described by a dissipation potential. An analytical expression is derived for the dissipation potential using the concepts of dimensional analysis and self-similarity to describe a fatigue crack propagation model for concrete. This is validated using available experimental results. Through a sensitivity analysis, the hierarchy of importance of different parameters is highlighted.