280 resultados para Fabrication technique
Resumo:
A `powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) similar to 650 pCN(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.
Resumo:
Cubic ZrO2: Fe3+ (0.5-4 mol%) nanoparticles (NPs) were synthesized via bin-inspired, inexpensive and simple route using Phyllanthus acidus as fuel. PXRD, SEM, TEM, FTIR, UV absorption and PL studies were performed to ascertain the formation of NPs. Rietveld analysis confirmed the formation of cubic structure. The influence of Fe3+ on the structure, morphology, UV absorption, PL emission and photocatalytic activity of NPs were investigated. The CIE chromaticity coordinates (0.36, 0.41) show that NPs could be a promising candidate for white LEDs. The influence of Fe3+ on ZrO2 matrix for photocatalytic degradation of AO7 was evaluated under UVA and Sunlight irradiation. The enhanced photocatalytic activity of spherical shaped ZrO2: Fe3+ (2 mol%) under UVA light was attributed to dopant concentration, crystallite size, narrow band gap, textural properties and capability for reducing the electron-hole pair recombination. The trend of inhibitory effect in the presence of different radical scavengers were followed the order SO42- > Cl- > C2H5OH > HCO3- > CO32-. The recycling catalytic ability of the ZrO2: Fe3+ (2 mol%) was also evaluated with a negligible decrease in the degradation efficiency even after the sixth successive run. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Objective: The aim of this study is to validate the applicability of the PolyVinyliDene Fluoride (PVDF) nasal sensor to assess the nasal airflow, in healthy subjects and patients with nasal obstruction and to correlate the results with the score of Visual Analogue Scale (VAS). Methods: PVDF nasal sensor and VAS measurements were carried out in 50 subjects (25-healthy subjects and 25 patients). The VAS score of nasal obstruction and peak-to-peak amplitude (Vp-p) of nasal cycle measured by PVDF nasal sensors were analyzed for right nostril (RN) and left nostril (LN) in both the groups. Spearman's rho correlation was calculated. The relationship between PVDF nasal sensor measurements and severity of nasal obstruction (VAS score) were assessed by ANOVA. Results: In healthy group, the measurement of nasal airflow by PVDF nasal sensor for RN and LN were found to be 51.14 +/- 5.87% and 48.85 +/- 5.87%, respectively. In patient group, PVDF nasal sensor indicated lesser nasal airflow in the blocked nostrils (RN: 23.33 +/- 10.54% and LN: 32.24 +/- 11.54%). Moderate correlation was observed in healthy group (r = 0.710, p < 0.001 for RN and r = 0.651, p < 0.001 for LN), and moderate to strong correlation in patient group (r = 0.751, p < 0.01 for RN and r = 0.885, p < 0.0001 for LN). Conclusion: PVDF nasal sensor method is a newly developed technique for measuring the nasal airflow. Moderate to strong correlation was observed between PVDF nasal sensor data and VAS scores for nasal obstruction. In our present study, PVDF nasal sensor technique successfully differentiated between healthy subjects and patients with nasal obstruction. Additionally, it can also assess severity of nasal obstruction in comparison with VAS. Thus, we propose that the PVDF nasal sensor technique could be used as a new diagnostic method to evaluate nasal obstruction in routine clinical practice. (C) 2015 Elsevier Inc. All rights reserved.
Resumo:
Herein, we report a facile and effective method to enhance the photocatalytic activity of bismuth oxybromide (BiOBr) semiconductor through the fabrication of heterojunction with Ag3PO4. The as synthesized Ag3PO4/BiOBr microspheres were characterized with transmission electron microscopy (TEM), scanning electron microscopy (SEM), energy-dispersive spectroscopy (EDS), X-ray diffraction (XRD) and UV-vis diffuse reflectance spectroscopy (DRS). The new Ag3PO4/BiOBr heterojunctions exhibited wide absorption in the visible-light region and compared to pure BiOBr and Ag3PO4 samples displayed exceptionally high photocatalytic activity for the degradation of typical organic pollutants such as Rhodamine B (RhB) and phenol. The optimal Ag/Bi weight ratio in Ag3PO4/BiOBr microsphere (AB7) was found to be 0.7. The enhanced photocatalytic activity was related to the efficient separation of electron-hole pairs derived from matching band potentials between BiOBr and Ag3PO4 which results into the generation of natural energy bias at heterojunction and subsequent transfer of photoinduced charge carriers. Moreover, the synthesized samples exhibited almost no loss of activity even after 6 recycling runs indicating their high photocatalytic stability. Considering the facile and environment friendly route for the synthesis of Ag3PO4/BiOBr hybrids with enhanced visible-light induced photocatalytic activity, it is possible to widely apply these hybrids in various fields such as waste water treatment. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor fabrication process begins with photolithography. Preparing a photo mask is the key process step in photolithography. The photo mask was fabricated by inscribing patterns directly onto a soda lime glass with the help of a laser beam, as it is easily controllable. Laser writer LW405-A was used for preparing the mask in this study. Exposure wavelength of 405 nm was used, with which 1.2 mu m feature size can be written in direct write-mode over the soda lime glass plate. The advantage of using the fabricated mask is that it can be used to design back contacts for thin film Photovoltaic (PV) solar cells. To investigate the process capability of LW405-A, same pattern with different line widths was written on soda lime glass samples at different writing speeds. The pattern was inscribed without proximity effect and stitching errors, which was characterized using optical microscope and field emission scanning electron microscope (FE-SEM). It was proven that writing speed of a mask-writer is decided according to the intended feature size and line width. As the writing speed increases, the edges of the patterns become rougher due to uneven scattering of the laser beam. From the fabricated mask, the solar cell can be developed embedding both the contacts at the bottom layer, to increase the absorption of solar radiation on the top surface effectively by increasing light absorption area.
Resumo:
A logic gate-based digital frequency multiplication technique for low-power frequency synthesis is presented. The proposed digital edge combining approach offers broadband operation with low-power and low-area advantages and is a promising candidate for low-power frequency synthesis in deep submicrometer CMOS technologies. Chip prototype of the proposed frequency multiplication-based 2.4-GHz binary frequency-shift-keying (BFSK)/amplitude shift keying (ASK) transmitter (TX) was fabricated in 0.13-mu m CMOS technology. The TX achieves maximum data rates of 3 and 20 Mb/s for BFSK and ASK modulations, respectively, consuming a 14-mA current from 1.3 V supply voltage. The corresponding energy efficiencies of the TX are 3.6 nJ/bit for BFSK and 0.91 nJ/bit for ASK modulations.
Resumo:
A facile hydrogelation of a p-pyridylenevinylene derivative (PV) bearing oxyethylene chains in the presence of orotic acid (OA) occurs via various non-covalent interactions. Depending on the PV: OA molar ratio, the hydrogel shows vesicle to either cluster-type aggregate or fiber transformation. Visual color tuning, stimuli-responsiveness and injectable properties of the hydrogel are also observed.
Resumo:
We propose an algorithmic technique for accelerating maximum likelihood (ML) algorithm for image reconstruction in fluorescence microscopy. This is made possible by integrating Biggs-Andrews (BA) method with ML approach. The results on widefield, confocal, and super-resolution 4Pi microscopy reveal substantial improvement in the speed of 3D image reconstruction (the number of iterations has reduced by approximately one-half). Moreover, the quality of reconstruction obtained using accelerated ML closely resembles with nonaccelerated ML method. The proposed technique is a step closer to realize real-time reconstruction in 3D fluorescence microscopy. Microsc. Res. Tech. 78:331-335, 2015. (c) 2015 Wiley Periodicals, Inc.
Resumo:
Isospectral beams have identical free vibration frequency spectrum for a specific boundary condition. The problem of finding non-uniform beams which are isospectral to a given uniform beam, with fixed-free boundary condition, leads to a multimodal optimization problem. The first Q natural frequencies of the given uniform Euler-Bernoulli beam are determined using analytical solution. The first Q natural frequencies of a non-uniform beam are obtained with the help of finite element modeling. In order to obtain the non-uniform beams isospectral to a given uniform beam, an error function is designed, which calculates the difference between the spectra of the given uniform beam and the non-uniform beam. In our study, this error function is minimized using electromagnetism inspired optimization technique, a population based iterative algorithm inspired by the attraction-repulsion physics of electromagnetism. Numerical results show the existence of the isospectral non-uniform beams for a given uniform beam, which occur as local minima. Non-uniform beams isospectral to a damaged beam, are also explored using the proposed methodology to illustrate the fact that accurate structural damage identification is difficult by just frequency measurements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Experimental and numerical investigations were carried out using lamb waves to study the degradation in adhesive joints made of carbon fiber reinforced plastic (CFRP) adherends and epoxy adhesive. Degradation was inducted into the epoxy adhesive by adding different amounts of polyvinyl alcohol. Fundamental lamb wave modes were excited in the CFRP adherends using piezoelectric transducer disks and made to propagate through the adhesive layer. The received waveforms across adhesive joints with varied degradation were studied. A 2D finite element model was utilized to verify the experimental results. Good correlation was observed between numerical and experimental results. Details of the investigation and results obtained are presented in the paper.
Resumo:
Multifrequency atomic force microscopy is a powerful nanoscale imaging and characterization technique that involves excitation of the atomic force microscope (AFM) probe and measurement of its response at multiple frequencies. This paper reports the design, fabrication, and evaluation of AFM probes with a specified set of torsional eigen-frequencies that facilitate enhancement of sensitivity in multifrequency AFM. A general approach is proposed to design the probes, which includes the design of their generic geometry, adoption of a simple lumped-parameter model, guidelines for determination of the initial dimensions, and an iterative scheme to obtain a probe with the specified eigen-frequencies. The proposed approach is employed to design a harmonic probe wherein the second and the third eigen-frequencies are the corresponding harmonics of the first eigen-frequency. The probe is subsequently fabricated and evaluated. The experimentally evaluated eigen-frequencies and associated mode shapes are shown to closely match the theoretical results. Finally, a simulation study is performed to demonstrate significant improvements in sensitivity to the second-and the third-harmonic spectral components of the tip-sample interaction force with the harmonic probe compared to that of a conventional probe.
Resumo:
One-dimensional transient heat flow is interpreted as a procession of `macro-scale translatory motion of indexed isothermal surfaces'. A new analytical model is proposed by introducing velocity of isothermal surface in Fourier heat diffusion equation. The velocity dependent function is extracted by revisiting `the concept of thermal layer of heat conduction in solid' and `exact solution' to estimate thermal diffusivity. The experimental approach involves establishment of 1 D unsteady heat flow inside the sample through Step-temperature excitation. A novel self-reference interferometer is utilized to separate a `unique isothermal surface' in time-varying temperature field. The translatory motion of the said isothermal surface is recorded using digital camera to estimate its velocity. From the knowledge of thermo-optic coefficient, temperature of the said isothermal surface is predicted. The performance of proposed method is evaluated for Quartz sample and compared with literature.
Resumo:
This paper presents a macro-level seismic landslide hazard assessment for the entire state of Sikkim, India, based on the Newmark's methodology. The slope map of Sikkim was derived from ASTER Global Digital Elevation Model (GDEM). Seismic shaking in terms of peak horizontal acceleration (PHA) at bedrock level was estimated from deterministic seismic hazard analysis (DSHA), considering point source model. Peak horizontal acceleration at the surface level for the study area was estimated based on nonlinear site amplification technique, considering B-type NEHRP site class. The PHA at surface was considered to induce driving forces on slopes, thus causing landslides. Knowing the surface level PHA and slope angle, the seismic landslide hazard assessment for each grid point was carried out using Newmark's analysis. The critical static factor of safety required to resist landslide for the PHA (obtained from deterministic analysis) was evaluated and its spatial variation throughout the study area is presented. For any slope in the study area, if the in-situ (available) static factor of safety is greater than the static factor of safety required to resist landslide as predicted in the present study, that slope is considered to be safe.
Resumo:
This paper presents the development and testing of an integrated low-power and low-cost dual-probe heat-pulse (DPHP) soil-moisture sensor in view of the electrical power consumed and affordability in developing countries. A DPHP sensor has two probes: a heater and a temperature sensor probe spaced 3 mm apart from the heater probe. Supply voltage of 3.3V is given to the heater-coil having resistance of 33 Omega power consumption of 330 mW, which is among the lowest in this category of sensors. The heater probe is 40 mm long with 2 mm diameter and hence is stiff enough to be inserted into the soil. The parametric finite element simulation study was performed to ensure that the maximum temperature rise is between 1 degrees C and 5 degrees C for wet and dry soils, respectively. The discrepancy between the simulation and experiment is less than 3.2%. The sensor was validated with white clay and tested with red soil samples to detect volumetric water-content ranging from 0% to 30%. The sensor element is integrated with low-power electronics for amplifying the output from thermocouple sensor and TelosB mote for wireless communication. A 3.7V lithium ion battery with capacity of 1150 mAh is used to power the system. The battery is charged by a 6V and 300 mA solar cell array. Readings were taken in 30 min intervals. The life-time of DPHP sensor node is around 3.6 days. The sensor, encased in 30 mm x 20 mm x 10 mm sized box, and integrated with electronics was tested independently in two separate laboratories for validating as well as investigating the dependence of the measurement of soil-moisture on the density of the soil. The difference in the readings while repeating the experiments was found out to be less than 0.01%. Furthermore, the effect of ambient temperature on the measurement of soil-moisture is studied experimentally and computationally. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
The down conversion of radio frequency components around the harmonics of the local oscillator (LO), and its impact on the accuracy of white space detection using integrated spectrum sensors, is studied. We propose an algorithm to mitigate the impact of harmonic downconversion by utilizing multiple parallel downconverters in the system architecture. The proposed algorithm is validated on a test-board using commercially available integrated circuits and a test-chip implemented in a 130-nm CMOS technology. The measured data show that the impact of the harmonic downconversion is closely related to the LO characteristics, and that much of it can be mitigated by the proposed technique.