622 resultados para nozzle temperature


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Langevin dynamics simulation studies have been employed to calculate the temperature dependent free energy surface and folding characteristics of a 500 monomer long linear alkane (polyethylene) chain with a realistic interaction potential. Both equilibrium and temperature quench simulation studies have been carried out. Using the shape anisotropy parameter (S) of the folded molecule as the order parameter, we find a weakly first order phase transition between the high-temperature molten globule and low-temperature rodlike crystalline states separated by a small barrier of the order of k(B)T. Near the melting temperature (580 K), we observe an intriguing intermittent fluctuation with pronounced ``1/f noise characteristics'' between these two states with large difference in shape and structure. We have also studied the possibilities of different pathways of folding to states much below the melting point. At 300 K starting from the all-trans linear configuration, the chain folds stepwise into a very regular fourfold crystallite with very high shape anisotropy. Whereas, when quenched from a high temperature (900 K) random coil regime, we identify a two step transition from the random coiled state to a molten globulelike state and, further, to a anisotropic rodlike state. The trajectory reveals an interesting coupling between the two order parameters, namely, radius of gyration (R-g) and the shape anisotropy parameter (S). The rodlike final state of the quench trajectory is characterized by lower shape anisotropy parameter and significantly larger number of gauche defects as compared to the final state obtained through equilibrium simulation starting from all-trans linear chain. The quench study shows indication of a nucleationlike pathway from the molten globule to the rodlike state involving an underlying rugged energy landscape. (C) 2010 American Institute of Physics. doi:10.1063/1.3509398]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The presently developed two-stage process involves diping the prefired porous disks of n-BaTiO3 in nonaqueous solutions containing Al-buty rate, Ti-isopropoxide, and tetraethyl silicate and subsequent sintering. This leads to uniform distribution of the grain-boundary layer (GBL) modifiers (Al2O3+ TiO2+ SiO2) and better control of the grain size as well as the positive temperature coefficient of resistivity characteristics. The technique is particularly suited for GBL modifiers in low concentrations (< 1%).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies of ZrO2 films prepared by d.c. reactive magnetron sputtering are described. The effects of substrate temperature on the packing density, refractive index, extinction coefficient and crystallinity phase have been investigated in the temperature range 25–450 °C. The refractive index varied from 1.84 to 1.95 and extinction coefficient from 2 × 10−3 to 9.6 × 10−3. This was explained on the basis of an increase in packing density from 0.686 to 0.813. The change in packing density has been attributed to a decrease in the oxygen condensation at higher temperatures. Annealing results in a decrease in refractive index and increase in extinction coefficient. The films deposited at 150 °C showed a monoclinic phase which transforms to a tetragonal phase at higher substrate temperatures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Degenerate pump-probe reflectivity experiments have been performed on a single crystal of bismuth telluride (Bi2Te3) as a function of sample temperature (3 K to 296 K) and pump intensity using similar to 50 femtosecond laser pulses with central photon energy of 1.57 eV. The time-resolved reflectivity data show two coherently generated totally symmetric A(1g) modes at 1.85 THz and 3.6 THz at 296 K which blue-shift to 1.9 THz and 4.02 THz, respectively, at 3 K. At high photoexcited carrier density of similar to 1.7 x 10(21) cm(-3), the phonon mode at 4.02 THz is two orders of magnitude higher positively chirped (i.e the phonon time period decreases with increasing delay time between the pump and the probe pulses) than the lower-frequency mode at 1.9 THz. The chirp parameter, beta is shown to be inversely varying with temperature. The time evolution of these modes is studied using continuous-wavelet transform of the time-resolved reflectivity data. Copyright (C) EPLA, 2010

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Numerous reports from several parts of the world have confirmed that on calm clear nights a minimum in air temperature can occur just above ground, at heights of the order of $\frac{1}{2}$ m or less. This phenomenon, first observed by Ramdas & Atmanathan (1932), carries the associated paradox of an apparently unstable layer that sustains itself for several hours, and has not so far been satisfactorily explained. We formulate here a theory that considers energy balance between radiation, conduction and free or forced convection in humid air, with surface temperature, humidity and wind incorporated into an appropriate mathematical model as parameters. A complete numerical solution of the coupled air-soil problem is used to validate an approach that specifies the surface temperature boundary condition through a cooling rate parameter. Utilizing a flux-emissivity scheme for computing radiative transfer, the model is numerically solved for various values of turbulent friction velocity. It is shown that a lifted minimum is predicted by the model for values of ground emissivity not too close to unity, and for sufficiently low surface cooling rates and eddy transport. Agreement with observation for reasonable values of the parameters is demonstrated. A heuristic argument is offered to show that radiation substantially increases the critical Rayleigh number for convection, thus circumventing or weakening Rayleigh-Benard instability. The model highlights the key role played by two parameters generally ignored in explanations of the phenomenon, namely surface emissivity and soil thermal conductivity, and shows that it is unnecessary to invoke the presence of such particulate constituents as haze to produce a lifted minimum.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Beta-Lactamase, which catalyzes beta-lactam antibiotics, is prototypical of large alpha/beta proteins with a scaffolding formed by strong noncovalent interactions. Experimentally, the enzyme is well characterized, and intermediates that are slightly less compact and having nearly the same content of secondary structure have been identified in the folding pathway. In the present study, high temperature molecular dynamics simulations have been carried out on the native enzyme in solution. Analysis of these results in terms of root mean square fluctuations in cartesian and [phi, psi] space, backbone dihedral angles and secondary structural hydrogen bonds forms the basis for an investigation of the topology of partially unfolded states of beta-lactamase. A differential stability has been observed for alpha-helices and beta-sheets upon thermal denaturation to putative unfolding intermediates. These observations contribute to an understanding of the folding/unfolding processes of beta-lactamases in particular, and other alpha/beta proteins in general.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phase-pure, crystalline lanthanide chromates LnCrO4 (V), where Ln = La, Pr, Nd, Sm, Gd, Dy, Ho, Yb, Lu and Y, have been prepared by the controlled combustion of the corresponding lanthanide biscitrato chromium (III) complexes at comparatively low temperatures. Formation of chromates (V) was confirmed by X-ray diffraction, infrared and electronic spectroscopy. Phase purity of the materials has also been confirmed by X-ray photoelectron spectroscopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ipso/cine ratio in the amination of 5-bromo-2,3-benzo- or 2-bromo-4,5-benzotropone shows a dependence upon the temperature at which the reaction is conducted, changing in favour of the ipso-product when the temperature is maintained high, ruling out an aryne-type mechanism. A comparison of independent mechanisms envisaged for the formation of the two isomeric products suggests a two-part reason: (i) at a higher reaction temperature, C-protonation, a step necessary for the formation of the cine-product, could be retarded when a direct internal mode is interfered with by a less efficient external one, and (ii) reketonisation by elimination of bromide, needed to form the ipso-product, is likely to have a high temperature coefficient enabling the rate of its formation to overtake that of the cine-product.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for simultaneous measurement of strain and temperature with a single tapered fiber Bragg grating is proposed. This method is based on the fact that the reflectivity at central wavelength of FBG reflection changes with chirp (strain gradient). A diode laser is locked to the central wavelength of FBG reflection. Central wavelength of the FBG shifts with temperature. Change in reflectivity & wavelength of the diode laser were used to measure strain and temperature on the FBG respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for simultaneous measurement of static/dynamic strain and temperature with a pair of matched fiber Bragg grating(FBG)s is proposed. When a diode laser locked to the mid reflection frequency of reference FBG is used to illuminate the sensor FBG, reflected intensity changes with strain on sensor FBG. Reference FBG responds with temperature on sensor FBG and is immune to strain, hence, wavelength of the diode laser acts as a signature for temperature measurement. Theoretical sensitivity limit for static strain and temperature are 1.2n epsilon / root Hz and 0.0011 degrees C respectively. Proposed sensor shows a great potential in high sensitive strain measurements with a simplified experimental setup.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The impedance of sealed nickel/cadmium cells around a cell e.m.f. of 0.0 V was measured at five different temperatures between � 10 and +30 °C. The results show that the behaviour is similar at all temperatures. Based on the experimental results, the relation between charge-transfer resistance (Rct) and temperature (T) has been established for the Volmer reaction. Further, the value of cathodic transfer coefficient (?) has been estimated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-polar a-plane GaN films were grown on an r-plane sapphire substrate by plasma assisted molecular beam epitaxy (PAMBE). The effect of growth temperature on structural, morphological and optical properties has been studied. The growth of non-polar a-plane (1 1 - 2 0) orientation of the GaN epilayers were confirmed by high resolution X-ray diffraction (HRXRD) study. The X-ray rocking curve (XRC) full width at half maximum of the (1 1 - 2 0) reflection shows in-plane anisotropic behavior and found to decrease with increase in growth temperature. The atomic force micrograph (AFM) shows island-like growth for the film grown at a lower temperature. Surface roughness has been decreased with increase in growth temperature. Room temperature photoluminescence shows near band edge emission at 3.434-3.442 eV. The film grown at 800 degrees C shows emission at 2.2 eV, which is attributed to yellow luminescence along with near band edge emission. (C) 2010 Elsevier B.V. All rights reserved.