252 resultados para Solvent Orange 7
Resumo:
This paper demonstrates the role of solvent in selectivity and sensitivity of a series of electron-rich compounds for the detection of trace amounts of picric acid. Two new electron-rich fluorescent esters (6, 7) containing a triphenylamine backbone as well as their analogous carboxylic acids (8, 9) have been synthesized and characterized. Fluorescent triphenylamine coupled with an ethynyl moiety constitutes p-electron-rich selective and sensitive probes for electron-deficient picric acid (PA). In solution, the high sensitivity of all the sensors toward PA can be attributed to a combined effect of the ground-state charge-transfer complex formation and resonance energy transfer between the sensor and analyte. The acids 8 and 9 also showed enhanced sensitivity for nitroaromatics in the solid state, and their enhanced sensitivity could be attributed to exciton migration due to close proximity of the neighboring acid molecules, as evident from the X-ray diffraction study. The compounds were found to be quite sensitive for the detection of trace amount of nitroaromatics in solution, solid, and contact mode.
Resumo:
The solid state structure of a new seven-membered sugar oxepane derivative, namely, p-bromo phenyl 4,5,7-tri-O-benzyl-beta-D-glycero-D-talo-septanoside is discussed, as determined through single crystal X-ray structural determination and in relation to their conformational features. The molecule adopts twist-chair as the preferred conformation, with conformational descriptor (TC2,3)-T-0,1. The solid state packing of molecules is governed by a rich network of non-covalent bonding originating from O-H center dot center dot center dot O, C-H center dot center dot center dot pi, C-H center dot center dot center dot Br and aromatic pi center dot center dot center dot pi interactions that stabilize the packing of molecules in the crystal. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Biomechanical assays offer a good alternative to biochemical assays in diagnosing disease states and assessing the efficacy of drugs. In view of this, we have developed a miniature compliant tool to estimate the bulk stiffness of cells, particularly MCF-7 (Michigan Cancer Foundation) cells whose diameter is 12-15 mu m in suspension. The compliant tool comprises a gripper and a displacement-amplifying compliant mechanism (DaCM), where the former helps in grasping the cell and the latter enables vision-based force-sensing. A DaCM is necessary because the microscope's field of view at the required magnification is not sufficient to simultaneously observe the cell and the movement of a point on the gripper, in order to estimate the force. Therefore, a DaCMis strategically embedded within an existing gripper design leading to a composite compliant mechanism. The DaCM is designed using the kinetoelastostatic map technique to achieve a 42 nN resolution of the force. The gripper, microfabricated with SU-8 using photolithography, is within the footprint of about 10 mm by 10 mm with the smallest feature size of about 5 mu m. The experiments with MCF-7 cells suggest that the bulk stiffness of these is in the range of 8090 mN/m. The details of design, prototyping and testing comprise the paper. (C) 2015 Elsevier Ltd. All rights reserved.
Resumo:
Carbon isotope compositions of carbonate rocks from similar to 2.7-Ga-old Neoarchean Vanivilas Formation of the Dharwar Supergroup presented earlier by us are re-evaluated in this study, besides oxygen isotope compositions of a few silica dolomite pairs. The purpose of such a revisit assumes significance in view of recent field evidences that suggest a glaciomarine origin for the matrix-supported conglomerate member, the Talya conglomerate, which underlies the carbonate rocks of the Vanivilas Formation. An in-depth analysis of carbon isotope data reveals preservation of their pristine character despite the rocks having been subjected to metamorphism to different degrees (from lower greenschist to lower amphibolite facies). The dolomitic member of Vanivilas Formation of Marikanive area is characterized by highly depleted delta C-13 value (up to -5 parts per thousand VPDB) and merits as the Indian example of ca. 2.7-Ga-old cap carbonate. This inference is further supported by estimated low temperature of equilibration documented by a few silica dolomite pairs from the Vanivilas Formation collected near Kalche area. These pairs show evidence for oxygen isotopic equilibrium at low temperatures (similar to 0-20 degrees C) with depleted water (delta O-18 = -21 parts per thousand to -15 parts per thousand VSMOW) of glacial origin. We propose that the mineral pairs were deposited during the deglaciation period when the ocean temperature was in its gradual restoration phase. The dolomite of Marikanive area is the first record of cap carbonates from the Indian subcontinent with Neoarchean antiquity.
Resumo:
We hypothesized that the AAV2 vector is targeted for destruction in the cytoplasm by the host cellular kinase/ubiquitination/proteasomal machinery and that modification of their targets on AAV2 capsid may improve its transduction efficiency. In vitro analysis with pharmacological inhibitors of cellular serine/threonine kinases (protein kinase A, protein kinase C, casein kinase II) showed an increase (20-90%) on AAV2-mediated gene expression. The three-dimensional structure of AAV2 capsid was then analyzed to predict the sites of ubiquitination and phosphorylation. Three phosphodegrons, which are the phosphorylation sites recognized as degradation signals by ubiquitin ligases, were identified. Mutation targets comprising eight serine (S) or seven threonine (T) or nine lysine (K) residues were selected in and around phosphodegrons on the basis of their solvent accessibility, overlap with the receptor binding regions, overlap with interaction interfaces of capsid proteins, and their evolutionary conservation across AAV serotypes. AAV2-EGFP vectors with the wild-type (WT) capsid or mutant capsids (15 S/T -> alanine A] or 9 K -> arginine R] single mutant or 2 double K -> R mutants) were then evaluated in vitro. The transduction efficiencies of 11 S/T -> A and 7 K -> R vectors were significantly higher (similar to 63-90%) than the AAV2-WT vectors (similar to 30-40%). Further, hepatic gene transfer of these mutant vectors in vivo resulted in higher vector copy numbers (up to 4.9-fold) and transgene expression (up to 14-fold) than observed from the AAV2-WT vector. One of the mutant vectors, S489A, generated similar to 8-fold fewer antibodies that could be cross-neutralized by AAV2-WT. This study thus demonstrates the feasibility of the use of these novel AAV2 capsid mutant vectors in hepatic gene therapy.
Resumo:
In the present work, electrospraying of an organic molecule is carried out using various solvents, obtaining fibril structures along with a range of distinct morphologies. Solvent characteristics play a major role in determining the morphology of the organic material. A thiophene derivative (7,9-di(thiophen-2-yl)-8H-cyclopentaa]acenaphthylen-8-one) (DTCPA) of donor-acceptor-donor (DAD) architecture is used to study this solvent effect. Seven solvents with decreasing vapour pressure are selected for experiments. Electrospraying is conducted at a solution concentration of 1.5 wt% and a constant applied voltage of 15 kV. Gradual transformation in morphology of the electrospun product from spiked-spheres to only spikes is observed. A mechanism describing this transformation is proposed based on electron micrograph analysis and XRD analysis. These data indicate that the morphological change is due to the synergistic effect of both vapour pressure and dielectric constant of the solvents. Through a reasonable control of the crystallite size and morphology along with the proposal of the transformation mechanism, this study elucidates electrospraying as a prospective method for designing architectures in organic electronics.
Resumo:
An organic solid, 4,7-dibromo-5,6-dinitro-2,1,3-benzothiadiazole, has been designed to serve as an illustrative example to quantitatively evaluate the relative merits of halogen and chalcogen bonding in terms of charge density features. The compound displays two polymorphic modifications, one crystallizing in a non-centrosymmetric space group (Z' = 1) and the other in a centrosymmetric space group with two molecules in the asymmetric unit (Z' = 2). Topological analysis based on QTAIM clearly brings out the dominance of the chalcogen bond over the halogen bond along with an indication that halogen bonds are more directional compared to chalcogen bonds. The cohesive energies calculated with the absence of both strong and weak hydrogen bonds as well as stacking interaction are indicative of the stabilities associated with the polymorphic forms.
Resumo:
A new spectrophotometric method for the determination of molybdenum in industrial materials has been developed using the leaf extract of Syzygium jambolanum DC based on the reaction of Mo (VI) at pH 7.0 to produce an orange-yellow complex with an absorption maximum at 426 nm. The molar absorptivity of the complex is 4.27 x 10(4) l mol(-1) cm(-1) and the absorbance, is linear in the range 0.05-0.8 ppm. Sandell sensitivity coefficient was found to be 2.25 x 10(-3) mu g/cm(2). The method is ten times more sensitive than the aqueous thiocyanate system. It has been applied successfully in micronutrient fertilizer, artificial freshwater and sea-water analyses.
Resumo:
Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.
Resumo:
Post-transcriptional modification of viral mRNA is essential for the translation of viral proteins by cellular translation machinery. Due to the cytoplasmic replication of Paramyxoviruses, the viral-encoded RNA-dependent RNA polymerase (RdRP) is thought to possess all activities required for mRNA capping and methylation. In the present work, using partially purified recombinant RNA polymerase complex of rinderpest virus expressed in insect cells, we demonstrate the in vitro methylation of capped mRNA. Further, we show that a recombinant C-terminal fragment (1717-2183 aa) of L protein is capable of methylating capped mRNA, suggesting that the various post-transcriptional activities of the L protein are located in independently folding domains.
Resumo:
Melt spun ribbons of Fe95-x Zr (x) B4Cu1 with x = 7 (Z7B4) and 9 (Z9B4) alloys have been prepared, and their structure and magnetic properties have been evaluated using XRD, DSC, TEM, VSM, and Mossbauer spectroscopy. The glass forming ability (GFA) of both alloys has been calculated theoretically using thermodynamical parameters, and Z9B4 alloy is found to possess higher GFA than that of Z7B4 alloy which is validated by XRD results. On annealing, the amorphous Z7B4 ribbon crystallizes into nanocrystalline alpha-Fe, whereas amorphous Z9B4 ribbon shows two-stage crystallization process, first partially to bcc solid solution which is then transformed to nanocrystalline alpha-Fe and Fe2Zr phases exhibiting bimodal distribution. A detailed phase analysis using Mossbauer spectroscopy through hyperfine field distribution of phases has been carried out to understand the crystallization behavior of Z7B4 and Z9B4 alloy ribbons. In order to understand the phase transformation behavior of Z7B4 and Z9B4 ribbons, molar Gibbs free energies of amorphous, alpha-Fe, and Fe2Zr phases have been evaluated. It is found that in case of Z7B4, alpha-Fe is always a stable phase, whereas Fe2Zr is stable at higher temperature for Z9B4. (C) The Minerals, Metals & Materials Society and ASM International 2015
Resumo:
Two new azide bridged copper(II) coordination polymer compounds, Cu-7(N-3)(14)(C3H10N2)(C4H13N3)]n (I) and Cu-7(N-3)(14)(C3H10N2)(C5H15N3)(2)](n) (II) where C3H10N2 = 1,2-diaminopropane (1,2-DAP); C4H13N3 = di-ethylenetriamine (DETA); C5H15N3 = N-2-aminoethyl-1,3-propanediamine (AEDAP)] were prepared by employing a room temperature diffusion technique involving three layers. Single crystal studies reveal that both compounds I and II, have similar connectivity forming Cu7 clusters through end-on (EO) bonding of the azide. The Cu-7 clusters are connected through end-to-end (EE) connectivity of the azides forming three-dimensional structures. Magnetic studies confirmed the ferromagnetic interactions within the Cu-7 units and revealed the occurrence of concomitant ferro- and antiferro-magnetic interactions between these clusters. As a result I behaves as a weak-ferromagnet with T-C = 10 K.