514 resultados para Sialyl Lewis X
Resumo:
The objective of the study was to investigate the effects of the nature of solvent and polymer concentration on the mass-transfer coefficients in desorption of solvents and to develop a correlation to predict them. Desorption was experimentally studied in a Lewis cell with concentrated binary solutions of polymer in good and poor solvents. The range of parameters covered are polymer weight fraction between 0.25 and 0.6, Reynolds number between 3 and 100; Schmidt number between 1.4 X lo6 and 2.5 X lo8, and Sherwood number between 3.5 X lo2 and 1.2 X lo4. Desorption from moderately concentrated solutions (polymer weight fraction -0.25) is gas-phase controlled. Studies with more concentrated solutions showed that the effects of solvent and concentration were such that corrections due to concentration-dependent diffusivity and viscosity as well as high flux had to be applied to the mass-transfer coefficients before they could be correlated.
Effect of High Pressure on the Electrical Conductivity of TlInX2 (X = Se, Te) Layered Semiconductors
Resumo:
The dc electrical conductivity of TlInX2 (X = Se, Te) single crystals, parallel and perpendicular to the (001) c-axis is studied under high quasi-hydrostatic pressure up to 7.0 GPa, at room temperature. Conductivity measurements parallel to the c-axis are carried out at high pressures and down to liquid nitrogen temperatures. These materials show continuous metallization under pressure. Both compounds have almost the same pressure coefficient of the electrical activation energy parallel to the c-axis, d(ΔE∥)/dP = −2.9 × 10−10 eV/Pa, which results from the narrowing of the band gap under pressure. The results are discussed in the light of the band structure of these compounds.
Resumo:
The asymmetric dicopper(II) title complex with a [Cu2(μ-O2CMe)22+ core was isolated from the reaction between Cu2(μ-O2CMe)4(H2O)2 and bipy in EtOH in the presence of NH4PF6 and has been characterized by X-ray diffraction analysis.
Resumo:
The authors have measured longitudinal and transverse magnetoresistance (MR) of crystalline pseudo-binary alloys FexNi80-xCr20 (50
Resumo:
Inovirus is a helical array of agr-helical protein asymmetric units surrounding a DNA core. X-ray fibre diffraction studies show that the Pf1 species of Inovirus can undergo a reversible temperature-induced transition between two similar structural forms having slightly different virion helix parameters. Molecular models of the two forms show no evidence for altered interactions between the protein and either the solvent or the viral DNA; but there are significant differences in the shape and orientation of the protein asymmetric unit, related to the changes in the virion parameters. Normal modes involving libration of whole asymmetric units are in a frequency range with appreciable entropy of libration, and the structural transition may be related to changes in libration.
Resumo:
Proton spin—lattice relaxation time (T1) is measured in [N(CH3)4]PbX3 (X=Cl, Br, I) from 300-77 K at 9.75 MHz. All the compounds show discontinuous changes in T1 values (at 256, 270 and 277 K, respectively), indicating phase transitions. Single T1 minimum is observed in all the cases and the T1 variation is explained in terms of [N(CH3)4] and CH3 group dynamics. The activation energy Eα decreases from chloride to iodide (from 4 to 2 kcal/mol). In bromide and iodide, T1 is found to decrease with increase in temperature at higher temperatures, indicating the presence of spin—rotation interaction.
Resumo:
An air-stable and water-soluble diastereomeric half-sandwich ruthenium(I1) complex, [Ru(s-MeCsH4Pr'-p)(H*O)-(L*)] (C104) (l), has been isolated and structurally characterized [HL* = (27)-(a methylbenzyl)salicylaldimine,2-HOC6H4CH-NCHMePhI. Complex 1, Czd-I3oNO&lRu, crystallizes in the noncentric triclinic space group P1 with a = 9.885(1) A, b = 10.185(1) A, c = 14.187(2) A, a = 110.32(1)', 6 = 102.17(1)', y = 102.41(1)O, V=1243( 1) A3, and 2 = 2. The X-ray structure shows the presence of two diastereomers in a 1:l ratio having RR,,,SCand SR,,,&c onfigurations. The Ru-OHz bond distances are considerably long, and the values for RR, - a~n d SRu-1isomers are 2.1 19(5) and 2.203(5) A, respectively. The aqua complex (1) exists as a single diastereomer in solution,and it forms stable adducts with P-, N-, and halide-donor ligands. The stereochemical changes associated with adduct-forming reactions follow an inversion order: PPhs >> P(OMe)3 > pyridine bases >> halides (I, Br, Cl) >H20.
Resumo:
The structures of Ca0.5Ti2P3O12 and Sr0.5Ti2P3O12, low-thermal-expansion materials, have been refined by the Rietveld method using high-resolution powder X-ray diffraction (XRD) data. The assignment of space group R[3 with combining macron] to NASICON-type compounds containing divalent cations is confirmed. 31P magic-angle spinning nuclear magnetic resonance (MASNMR) data are presented as supporting data. A comparison of changes in the polyhedral network resulting from the cation distribution, is made with NaTi2P3O12 and Nb2P3O12. Factors that may govern thermal expansion in this family of compounds are discussed.
Resumo:
Layered perovskite oxides of the formula ACa~,La,Nb3-,Ti,010 (A = K, Rb, Cs and 0 < x d 2) have been prepared. The members adopt the structures of the parent ACazNb3010. Interlayer alkali cations in the niobium-titanium oxide series can be ion-exchanged with Li+, Na+, NH4+, or H+ to give new derivatives. Intercalation of the protonated derivatives with organic bases reveals that the Bronsted acidity of the solid solution series, HC~ ~ , L ~ ,N~ ~ , T ~ ,dOep~eOnd, s on the titanium content. While the x = 1 member (HCaLaNbzTiOlo) is nearly as acidic as the parent HCazNb3010, the x = 2 member (HLazNbTizOlo) is a weak acid hardly intercalating organic bases with pKa - 11.3. The variation of acidity is probably due to an ordering of Nb/Ti atoms in the triple octahedral perovskite slabs, [Ca~,La,Nb~,Ti,0~0], such that protons are attached to NbO6 octahedra in the x = 1 member and to Ti06 octahedra in the x = 2 member.
Resumo:
X-ray diffraction line profile analysis (XRDLPA) techniques have been applied to investigate the deformed microstructure of a recently developed boron modified two-phase titanium alloy Ti-6Al-4V. The alloy was hot compressed at 750 degrees C up to 50% height reduction at two different strain rates (10(-3) S-1 and 1 S-1). Microstructural parameters like average domain size, average microstrain within the domain and dislocation density of the two phases were determined using X-ray diffraction line profile analysis. The results indicate an increase in the microstrain and dislocation density for the alpha-phase and decrease for the beta-phase in the case of boron modified alloys as compared to the normal material. Microstructural modifications viz, the grain refinement and the presence of hard, brittle TiB particles in the case of boron modified alloy are held responsible for the observed difference in the dislocation density. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
N,N',N `'-Tris(2-anisyl)guanidine, (ArNH)(2)C=NAr (Ar = 2-(MeO)C6H4), was cyclopallaclated with Pd(OC(O)R)(2) (R = Me, CF3) in toluene at 70 degrees C to afford palladacycles Pd{kappa(2)(C,N)-C6H3-(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-OC(O)R)](2)(R = Me (1a) and CF3 (1b)) in 87% and 95% yield, respectively. Palladacycle 1a was subjected to a metathetical reaction with LiBr in aqueous ethanol at 78 degrees C to afford palladacycle Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}(mu-Br)](2) (2) in 90% yield. Palladacycle 2 was subjected to a bridge-splitting reaction with Lewis bases in CH2Cl2 to afford the monomeric palladacycles Pd{kappa(2)(C,N)-C6H3(OMe)-3(NHC(NHAr)(=NAr))-2}Br(L)] (L = 2,6-Me2C5H3N (3a), 2,4-Me2C5H3N (3b), 3,5-Me2C5H3N (3c), XyNC (Xy = 2,6-Me2C6H3; 4a), (BuNC)-Bu-t (4b), and PPh3 (5)) in 87-95% yield. Palladacycle 2 upon reaction with 2 equiv of XyNC in CH2Cl2 afforded an unanticipated palladacycle, Pd{kappa(2)(C,N)-C(=NXy)(C6H3(OMe)-4)-2(N=C-(NH Ar)(2))-3} Br(CNXy)] (6) in 93% yield, and the driving force for the formation of 6 was ascribed to a ring contraction followed by amine-imine tautomerization. Palladacycles 1 a,b revealed a dimeric transoid in-in conformation with ``open book'' framework in the solid state. In solution, 1 a exhibited a fluxional behavior ascribed to the six-membered ``(C,N)Pd'' ring inversion and partly dissociates to the pincer type and kappa(2)-O,O'-OAc monomeric palladacycles by an anchimerically assisted acetate cleavage process as studied by variable-temperature H-1 NMR data. Palladacycles 3a,b revealed a unique trans configuration around the palladium with lutidine being placed trans to the Pd-C bond, whereas cis stereochemistry was observed between the Pd-C bond and the Lewis base in 4a (as determined by X-ray diffraction data) and 5 (as determined by P-31 and C-13 NMR data). The aforementioned stereochemical difference was explained by invoking relative hardness/softness of the donor atoms around the palladium center. In solution, palladacycles 3a-c exist as a mixture of two interconverting boat conformers via a planar intermediate without any bond breaking due to the six-membered ``(C,N)Pd'' ring inversion, whereas palladacycles 4a,b and 5 exist as a single isomer, as deduced from detailed H-1 NMR studies.
Resumo:
In this paper, we report an enhancement in ionic conductivity in a new nano-composite solid polymer electrolyte namely, (PEG) (x) LiBr: y(SiO2). The samples were prepared, characterized, and investigated by XRD, IR, NMR, and impedance spectroscopy. Conductivity as a function of salt concentration shows a double peak. Five weight percent addition of silica nanoparticles increases the ionic conductivity by two orders of magnitude. Conductivity exhibits an Arrhenius type dependence on temperature. IR study has shown that the existence of nanoparticles in the vicinity of terminal OaEuro center dot H group results in a shift in IR absorption frequency and increase in amplitude of vibration of the terminal OaEuro center dot H group. This might lead to an enhancement in conductivity due to increased segmental motion of the polymer. Li-7 NMR spectroscopic studies also seem to support this. Thus addition of nanoparticle inert fillers still seems to be a promising technique to enhance the ionic conductivity in solid polymer electrolytes.
Resumo:
The compounds Zn(C12H8N2)](2)C12N2H8(COO)(2)](2)center dot(C6H12O)center dot(H2O), I, Zn(C12H8N2)]C12N2H8(COO)(2)], II, Cd(C12H8N2)(H2O)]C12N2H8(COO)(2)]center dot(H2O), III, Zn(C10N2H8)]C12N2H8(COO)(2)]center dot 0.5(C10N2H8), IV, Cd(C12N2H8(COO)(2)center dot H2O], V, and Zn-3(mu(2)-O)(mu(3)-O)(3)]C12N2H8(COO)(2)], VI, have been synthesized by using a biphasic approach (I, III, V, VI) or regular hydrothermal method (II, IV). The compounds exhibit one (I and II), two (In), and three dimensionally (IV, V, VI) extended structures. The flexible azodibenzoate ligand gives rise to a 3-fold interpenetration (IV) when the synthesis was carried out using normal hydrothermal methods. The biphasic approach forms structures without any interpenetrations, especially in the three-dimensional structures of V and VI. Formation of Cd2O2 dimers in V and extended M-O(H)-M two-dimensional layers in VI suggests the subtle structural control achieved by the biphasic method. Transformation studies indicate that it is possible to transform I to II. Lewis acid catalytic studies have been performed to evaluate the role of the coordination environment in such reactions. All the compounds have been characterized by a variety of techniques that includes powder X-ray diffraction, infrared, thermogravitric analysis, UV-vis, photoluminescence studies.
Resumo:
K(2,2,2-crypt)](2)As-7]center dot THF, 1 (2,2,2-crypt = 4,7,13,16,21,24-hexaoxa-1,10-diazabicyclo8.8.8]hexacosane) is the first well characterized seven-atom radical anion of group 15. UV-Vis spectroscopy confirms the presence and electronic structure of As-7](2-). Cyclic voltammetry in DMF solution shows the As-7(3) /As-7(2) redox couple as a one-electron reversible process. Theoretical investigations explore the bonding and properties of compound 1.
Resumo:
A structural investigation of cubic oxides (space group I23) of the formula Bi(26-x)M(x)O(40-delta) (M = Ti, Mn, Fe, Co, Ni and Pb) related to the Y-Bi2O3 phase has been carried out by the Rietveld profile analysis of high-resolution X-ray powder diffraction data in order to establish the cation distributions. Compositional dependence of the cation distribution has been examined in the case of Bi26-xCoxO40-delta (1 < x < 16). The study reveals that in Bi(26-X)M(X)O(40-delta) with M = Ti, Mn, Fe, Co or Pb, the M cations tend to occupy tetrahedral (2a) sites when x < 2 while the octahedral (24f) sites are shared by the excess Co or Ni cations with Bi atoms when x > 2. Also experimental magnetic moments of Mn, Co and Ni derivatives have been used to establish the valence state and distribution of these cations.