370 resultados para Nonlinear behavior
Resumo:
Edge-sharing bioctahedral (ESBO) complexes [Ru-2(OMe)(O2CC6H4-p-X)3(1-MeIm)(4)](ClO4)2 (X = OMe (1a), Me (1b)) and [Ru-2(O2CC6H4-P-X)(4)(1-MeIm)(4)](ClO4)(2) (X = OMe (2a), Me (2b)) are prepared by reacting Ru2Cl(O(2)CR)(4) with 1-methylimidazole (1-MeIm) in methanol followed by treatment with NaClO4. Complex 2a and the PF6- salt (1a') of 1a have been structurally characterized. Crystal data for 1a.1.5MeCN. 0.5Et(2)O: triclinic, P (1) over bar, a = 13.125(2) Angstrom, b = 15.529(3) Angstrom, c 17.314(5) Angstrom, a; 67.03(2)degrees, beta 68.05(2)degrees, gamma = 81.38(1)degrees, V 3014(1) Angstrom(3), Z = 2. Crystal data for 2a: triclinic, P (1) over bar, a 8.950(1) Angstrom, b = 12.089(3) Angstrom, c = 13.735(3) Angstrom, alpha 81.09(2)degrees, beta = 72.27(1)degrees, gamma = 83.15(2)degrees, V = 1394(1) Angstrom(3), Z = 1. The complexes consist of a diruthenium(III) unit held by two monoatomic and two three-atom bridging ligands. The 1-MeIm ligands are at the terminal sites of the [Ru-2(mu-L)(eta(1):mu-O(2)CR)(eta(1):eta(1):mu-O(2)CR)(2)](2+) core having a Ru-Ru single bond (L = OMe or eta(1)-O(2)CR). The Ru-Ru distance and the Ru-O-Ru angle in the core of 1a' and 2a are 2.49 Angstrom and similar to 76 degrees. The complexes undergo one-electron oxidation and reduction processes in MeCN-0.1 M TBAP to form mixed-valence diruthenium species with Ru-Ru bonds of orders 1.5 and 0.5, respectively.
Resumo:
The advent of high intensity lasers coupled with the recent advances in crystal technology has led to rapid progress in the field of nonlinear optics. This article traces the history of materials development that has taken place over the past forty odd years and dwells on the current status in this important area. The materials aspect is discussed under three classes viz. inorganic, organic and semiorganic crystals. In the end, some of the crystal growth work that has been carried out in author's laboratory is presented.
Resumo:
We present analytic results to show that the Schwinger-boson hole-fermion mean-field state exhibits non-Fermi liquid behavior due to spin-charge separation. The physical electron Green's function consists of three additive components. (a) A Fermi-liquid component associated with the bose condensate. (b) A non-Fermi liquid component which has a logarithmic peak and a long tail that gives rise to a linear density of states that is symmetric about the Fermi level and a momentum distribution function with a logarithmic discontinuity at the Fermi surface. (c) A second non-Fermi liquid component associated with the thermal bosons which leads to a constant density of states. It is shown that zero-point fluctuations associated with the spin-degrees of freedom are responsible for the logarithmic instabilities and the restoration of particle-hole symmetry close to the Fermi surface.
Resumo:
The flow due to a finite disk rotating in an incompressible viscous fluid has been studied. A modified Newton-gradient finite difference scheme is used to obtain the solution of full Navier-Stokes equations numerically for different disk and cylinder sizes for a wide range of Reynolds numbers. The introduction of the aspect ratio and the disk-shroud gap, significantly alters the flow characteristics in the region under consideration, The frictional torque calculated from the flow data reveals that the contribution due to nonlinear terms is not negligible even at a low Reynolds number. For large Reynolds numbers, the flow structure reveals a strong boundary layer character.
Resumo:
We highlight our recent experimental work on an efficient molecular nonlinear optical crystal, 3-methoxy 4-hydroxy benzaldehyde (MHBA). Optical quality single crystals of MHBA were grown from mixtures of solvents and from melt. The overall absorption and transparency window were improved by growing them in a mixture of chloroform and acetone. The grown crystals were characterized for their optical transmission, mechanical hardness and laser damage. We have observed a strong correlation between mechanical properties and laser induced damage.
Resumo:
Time evolution of mean-squared displacement based on molecular dynamics for a variety of adsorbate-zeolite systems is reported. Transition from ballistic to diffusive behavior is observed for all the systems. The transition times are found to be system dependent and show different types of dependence on temperature. Model calculations on a one-dimensional system are carried out which show that the characteristic length and transition times are dependent on the distance between the barriers, their heights, and temperature. In light of these findings, it is shown that it is possible to obtain valuable information about the average potential energy surface sampled under specific external conditions.
Resumo:
A rammed-earth wall is a monolithic construction made by compacting processed soil in progressive layers in a rigid formwork. There is a growing interest in using this low-embodied-carbon building material in buildings. The paper investigates the strength and structural behavior of story-high cement-stabilized rammed-earth (CSRE) walls, reviews literature on the strength of CSRE, and discusses results of the compressive strength of CSRE prisms, wallettes, and story-high walls. The strength of the story-high wall was compared with the strength of wallettes and prisms. There is a nearly 30% reduction in strength as the height-to-thickness ratio increases from about 5 to 20. The ultimate compressive strength of CSRE walls predicted using the tangent modulus theory is in close agreement with the experimental values. The shear failures noticed in the story-high walls resemble the shear failures of short-height prism and wallette specimens. The paper ends with a discussion of structural design and characteristic compressive strength of CSRE walls. DOI: 10.1061/(ASCE)MT.1943-5533.0000155. (C) 2011 American Society of Civil Engineers.
Resumo:
Even though dynamic programming offers an optimal control solution in a state feedback form, the method is overwhelmed by computational and storage requirements. Approximate dynamic programming implemented with an Adaptive Critic (AC) neural network structure has evolved as a powerful alternative technique that obviates the need for excessive computations and storage requirements in solving optimal control problems. In this paper, an improvement to the AC architecture, called the �Single Network Adaptive Critic (SNAC)� is presented. This approach is applicable to a wide class of nonlinear systems where the optimal control (stationary) equation can be explicitly expressed in terms of the state and costate variables. The selection of this terminology is guided by the fact that it eliminates the use of one neural network (namely the action network) that is part of a typical dual network AC setup. As a consequence, the SNAC architecture offers three potential advantages: a simpler architecture, lesser computational load and elimination of the approximation error associated with the eliminated network. In order to demonstrate these benefits and the control synthesis technique using SNAC, two problems have been solved with the AC and SNAC approaches and their computational performances are compared. One of these problems is a real-life Micro-Electro-Mechanical-system (MEMS) problem, which demonstrates that the SNAC technique is applicable to complex engineering systems.
Resumo:
Many physical problems can be modeled by scalar, first-order, nonlinear, hyperbolic, partial differential equations (PDEs). The solutions to these PDEs often contain shock and rarefaction waves, where the solution becomes discontinuous or has a discontinuous derivative. One can encounter difficulties using traditional finite difference methods to solve these equations. In this paper, we introduce a numerical method for solving first-order scalar wave equations. The method involves solving ordinary differential equations (ODEs) to advance the solution along the characteristics and to propagate the characteristics in time. Shocks are created when characteristics cross, and the shocks are then propagated by applying analytical jump conditions. New characteristics are inserted in spreading rarefaction fans. New characteristics are also inserted when values on adjacent characteristics lie on opposite sides of an inflection point of a nonconvex flux function, Solutions along characteristics are propagated using a standard fourth-order Runge-Kutta ODE solver. Shocks waves are kept perfectly sharp. In addition, shock locations and velocities are determined without analyzing smeared profiles or taking numerical derivatives. In order to test the numerical method, we study analytically a particular class of nonlinear hyperbolic PDEs, deriving closed form solutions for certain special initial data. We also find bounded, smooth, self-similar solutions using group theoretic methods. The numerical method is validated against these analytical results. In addition, we compare the errors in our method with those using the Lax-Wendroff method for both convex and nonconvex flux functions. Finally, we apply the method to solve a PDE with a convex flux function describing the development of a thin liquid film on a horizontally rotating disk and a PDE with a nonconvex flux function, arising in a problem concerning flow in an underground reservoir.
Resumo:
Expressions for various second-order derivatives of surface tension with respect to composition at infinite dilution in terms of the interaction parameters of the surface and those of the bulk phases of dilute ternary melts have been presented. A method of deducing the parameters, which consists of repeated differentiation of Butler's equations with subsequent application of the appropriate boundary conditions, has been developed. The present investigation calculates the surface tension and adsorption functions of the Fe-S-O melts at 1873 and 1923 K using the modified form of Butler's equations and the derived values for the surface interaction parameters of the system. The calculated values are found to be in good agreement with those of the experimental data of the system. The present analysis indicates that the energetics of the surface phase are considerably different from those of the bulk phase. The present research investigates a critical compositional range beyond which the surface tension increases with temperature. The observed increase in adsorption of sulfur with consequent desorption of oxygen as a function of temperature above the critical compositional range has been ascribed to the increase of activity ratios of oxygen to sulfur in the surface relative to those in the bulk phase of the system.
Resumo:
A new computational tool is presented in this paper for suboptimal control design of a class of nonlinear distributed parameter systems. First proper orthogonal decomposition based problem-oriented basis functions are designed, which are then used in a Galerkin projection to come up with a low-order lumped parameter approximation. Next, a suboptimal controller is designed using the emerging /spl thetas/-D technique for lumped parameter systems. This time domain sub-optimal control solution is then mapped back to the distributed domain using the same basis functions, which essentially leads to a closed form solution for the controller in a state feedback form. Numerical results for a real-life nonlinear temperature control problem indicate that the proposed method holds promise as a good suboptimal control design technique for distributed parameter systems.
Resumo:
Combining the principles of dynamic inversion and optimization theory, a new approach is presented for stable control of a class of one-dimensional nonlinear distributed parameter systems, assuming the availability a continuous actuator in the spatial domain. Unlike the existing approximate-then-design and design-then-approximate techniques, here there is no need of any approximation either of the system dynamics or of the resulting controller. Rather, the control synthesis approach is fairly straight-forward and simple. The controller formulation has more elegance because we can prove the convergence of the controller to its steady state value. To demonstrate the potential of the proposed technique, a real-life temperature control problem for a heat transfer application is solved. It has been demonstrated that a desired temperature profile can be achieved starting from any arbitrary initial temperature profile.
Resumo:
In this paper, an improved probabilistic linearization approach is developed to study the response of nonlinear single degree of freedom (SDOF) systems under narrow-band inputs. An integral equation for the probability density function (PDF) of the envelope is derived. This equation is solved using an iterative scheme. The technique is applied to study the hardening type Duffing's oscillator under narrow-band excitation. The results compare favorably with those obtained using numerical simulation. In particular, the bimodal nature of the PDF for the response envelope for certain parameter ranges is brought out.
Resumo:
In the complex Ginzburg-Landau equation, we consider possible ''phase turbulent'' regimes, where asymptotic correlations are controlled by phase fluctuations rather than by topological defects. Conjecturing that the decay of such correlations is governed by the Kardar-Parisi-Zhang (KPZ) model of growing interfaces, we derive the following results: (1) A scaling ansatz implies that equal-time spatial correlations in 1d, 2d, and 3d decay like e(-Ax2 zeta), where A is a nonuniversal constant, and zeta=1/2 in 1d. (2) Temporal correlations decay as exp(-t(2 beta)h(t/L(z))), with the scaling law <(beta)over bar> = <(zeta)over bar>/z, where z = 3/2, 1.58..., and 1.66..., for d = 1,2, and 3 respectively. The scaling function h(y) approaches a constant as y --> 0, and behaves like y(2(beta-<(beta)over bar>)), for large y. If in 3d the associated KPZ model turns out to be in its weak-coupling (''smooth'') phase, then, instead of the above behavior, the CGLE exhibits rotating long-range order whose connected correlations decay like 1/x in space or 1/t(1/2) in time. (3) For system sizes, L, and times t respectively less than a crossover length, L(c), and time, t(c), correlations are governed by the free-field or Edwards-Wilkinson (EW) equation, rather than the KPZ model. In 1d, we find that L(c) is large: L(c) similar to 35,000; for L < L(c) we show numerical evidence for stretched exponential decay of temporal correlations with an exponent consistent with the EW value beta(EW)= 1/4.