438 resultados para Morphine-induced Analgesia


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Macrophages, as sentinels of robust host immunity, are key regulators of innate immune responses against invading mycobacteria; however, pathogenic mycobacteria survive in the infected host by subverting host innate immunity. Infection dependent expression of early secreted antigenic target protein 6 (ESAT-6) by Mycobacterium tuberculosis is strongly correlated with subversion of innate immune responses against invading mycobacteria. As a part of multifaceted immunity to mycobacterial infection, induced expression of cyclooxygenase-2 (COX-2) may act as an important influencing factor towards effective host immunity. In the current investigation, we demonstrate that ESAT-6 triggers COX-2 expression both in vitro and in vivo in a TLR2 dependent manner. Signaling perturbation data suggest that signaling dynamics of PI3K and p38 and JNK1/2 MAPK assume critical importance in ESAT-6 triggered expression of COX-2 in macrophages. Interestingly, ESAT-6 triggered PI3K-MAPK signaling axis holds the capacity to regulate coordinated activation of NF-kappa B and AP-1. Overall, current investigation provides mechanistic insights into ESAT-6 induced COX-2 expression and unravels TLR2 mediated interplay of PI3K and MAPK signaling axis as a rate-determining step during intricate host immune responses. These findings would serve as a paradigm to understand pathogenesis of mycobacterial infection and clearly pave a way towards development of novel therapeutics. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report high pressure Raman studies on single crystals of metallic LaB6 upto a pressure of 16.$ GPa. Raman spectra shows three lines at 680 cm(-1) (T-2g), 1120 cm(-1) (E-g) and 1258 cm(-1) (A(1g)), associated with the internal modes of B-6 molecule. The T-2g mode shows an asymmetric Fano line shape, arising from the interference between the phonon line and the electronic continuum. The line is fitted with I(omega) = I-0(q + epsilon(2))/(I + epsilon(2)) where epsilon = (omega - omega(0))/Gamma, omega(0) is the phonon frequency renormalised due to electron-phonon self energy corrections, Tis the width parameter proportional to the square of the matrix element of the electron-phonon interaction potential. The parameter a signifies the strength of interference. Most interestingly our pressure data for the T-2g mode shows a significant change in the slope of the mode frequency with pressure d omega(0)/dP and Gamma at 9.5 GPa. This clearly indicates that LaB6 undergoes a subtle phase transition at 9.5 GPa within the metallic phase.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report Raman signatures of electronic topological transition (ETT) at 3.6 GPa and rhombohedral (alpha-Bi2Te3) to monoclinic (beta-Bi2Te3) structural transition at similar to 8 GPa. At the onset of ETT, a new Raman mode appears near 107 cm(-1) which is dispersionless with pressure. The structural transition at similar to 8 GPa is marked by a change in pressure derivative of A(1g) and E-g mode frequencies as well as by appearance of new modes near 115 cm(-1) and 135 cm(-1). The mode Grilneisen parameters are determined in both the alpha and beta-phases. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Thin films of Sb40Se20S40 with thickness 1000 nm were prepared by thermal evaporation technique. The amorphous nature of the thin films was verified by X-ray diffractometer. The chemical composition of the deposited thin films was examined by energy dispersive X-ray analysis (EDAX). The changes in optical properties due to the influence of laser radiation on amorphous thin films of Sb40Se20S40 glassy alloy were calculated from absorbance spectra as a function of photon energy in the wavelength region 450-900 nm. Analysis of the optical absorption data shows that the rule of non-direct transitions predominates. It has been observed that laser-irradiation of the films leads to a decrease in optical band gap while increase in absorption coefficient. The decrease in the optical band gap is explained on the basis of change in nature of films due to disorderness. The optical changes are supported by X-ray photoelectron spectroscopy and Raman spectroscopy. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Distinctions between isobaric residues have been a major challenge in mass spectrometric peptide sequencing. Here, we propose a methodology for distinction among isobaric leucine, isoleucine, and hydroxyproline, a commonly found post-translationally modified amino acid with a nominal mass of 113 Da, through a combined electron transfer dissociation-collision-induced dissociation approach. While the absence of c and z(center dot) ions, corresponding to the Yyy-Xxx (Xxx = Leu, Ile, or Hyp) segment, is indicative of the presence of hydroxyproline, loss of isopropyl (Delta m = 43 Da) or ethyl radicals (Delta m = 29 Da), through collisional activation of z(center dot) radical ions, are characteristic of leucine or isoleucine, respectively. Radical migration processes permit distinctions even in cases where the specific e ions, corresponding to the Yyy-Leu or -Ile segments, are absent or of low intensity. This tandem mass spectrometric (MSn) method has been successfully implemented in a liquid chromatography MSn platform to determine the identity of 23 different isobaric residues from a mixture of five different peptides. The approach is convenient for distinction of isobaric residues from any crude peptide mixture, typically encountered in natural peptide libraries or proteomic analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our in situ x-ray diffraction and Raman measurements of Yb2Ti2O7 pyrochlore show that it undergoes a reversible structural phase transition from cubic pyrochlore to a monoclinic phase at similar to 28.6 GPa. Analysis of the x-ray data shows the transition to be thermodynamically first order and the high pressure phase to be substitutionally disordered. These experimental results are supported by our first principles calculations. (C) 2012 American Institute of Physics. [doi:10.1063/1.3681300]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a mechanism for amplitude death in coupled nonlinear dynamical systems on a complex network having interactions with a common environment like external system. We develop a general stability analysis that is valid for any network topology and obtain the threshold values of coupling constants for the onset of amplitude death. An important outcome of our study is a universal relation between the critical coupling strength and the largest nonzero eigenvalue of the coupling matrix. Our results are fully supported by the detailed numerical analysis for different network topologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The diamond films were deposited onto a wurtzite gallium nitride (GaN) thin film substrate using hot-filament chemical vapor deposition (HFCVD). During the film deposition a lateral temperature gradient was imposed across the substrate by inclining the substrate. As grown films predominantly showed the hexagonal phase, when no inclination was applied to the substrate. Tilting the substrate with respect to the heating filament by 6 degrees imposed a lateral temperature gradient across the substrate, which induced the formation of a cubic diamond phase. Diamond grains were predominantly oriented in the (100) direction. However, a further increase in the substrate tilt angle to 12 degrees, resulted in grains oriented in the (111) direction. The growth rate and hence the morphology of diamond grains varied along the inclined substrate. The present study focuses on the measurements of dominant phase formation and crystal orientation with varying substrate inclination using orientation-imaging microscopy (OIM). This technique enables direct examination of individual diamond grains and their crystallographic orientation. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The utility of yeast, Saccharomyces cerevisiae, in the separation of quartz from hematite is demonstrated. Yeast cells; as well as their metabolites, functioned as flotation collectors, depressants or flocculants and dispersants for hematite and quartz. Interaction between yeast and the above minerals resulted in significant surface chemical changes, rendering quartz surfaces hydrophobic and hematite hydrophilic. Mineral-specific extracellular proteins and exopolysaccharides were secreted by yeast cells when grown in the presence of quartz and hematite, respectively. Quartz could be efficiently separated from hematite through microbially induced flotation and selective flocculation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

CaSiO3:Dy3+ (1-5 mol%) nanophosphors have been prepared by a low temperature solution combustion method. The structural and luminescence (ionoluminescence; IL and photoluminescence; PL) studies have been carried out for pristine and ion irradiated samples. The XRD patterns of pristine sample show a prominent peak at (320) for the monoclinic structure of beta-CaSiO3. Upon ion irradiation, the intensity of the prominent peak is decreased at the fluence of 7.81 x 10(12) ions cm(-2) and at higher fluence of 15.62 x 10(12) ions cm(-2), the prominent peak completely vanishes. The decrease in peak intensity might be due to the stress induced point defects. On-line IL and in situ PL studies have been carried out on pelletized samples bombarded with 100 MeV Si7+ ions with fluences in the range (7.81-15.62) x 10(12) ions cm(-2). The characteristic emission peaks at 481,574, 664 and 754 nm recorded in both IL and PL are attributed to the luminescence centers activated by Dy3+ ions. It is found that IL and PL emissions intensity decreases with increase in Si7+ ion fluence. The decrease in intensity can be due to the destruction of Si-O-Si and O-Si-O type species present on the surface of the sample. FTIR studies also confirm the Si-O-Si and O-Si-O type species observed to be sensitive for swift heavy ion (SHI) irradiated samples. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Room temperature nanoindentation experiments, employing two different pyramidal (Berkovich and cube-corner) indenters, were performed on a Zr-based bulk metallic glass (BMG) to critically examine the possibility of indentation-induced nanocrystallization in BMGs. Cross-sectional transmission electron microscopy images obtained from high angle annular dark field ( HAADF) and high resolution (HR) modes clearly indicate to the occurrence of nanocrystallization. Pronounced nanocrystallite formation in the case of sharper cube-corner indenter suggests that the structural transformation is favored by the high strains introduced during nanoindentation. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents studies on the use of carbon nanotubes dispersed in an insulating fluid to serve as an automaton for healing open-circuit interconnect faults in integrated circuits. The physics behind the repair mechanism is the electric-field-induced diffusion limited aggregation. On the occurrence of an open fault, the repair is automatically triggered due to the presence of an electric field across the gap. We perform studies on the repair time as a function of the electric field and dispersion concentrations with the above application in mind.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Interaction of graphene, graphene oxide, and related nanocarbons with radiation gives rise to many novel properties and phenomena. Irradiation of graphene oxide in solid state or in solution by sunlight, UV radiation, or excimer laser radiation reduces it to graphene with negligible oxygen functionalities on the surface. This transformation can be exploited for nanopatterning and for large scale production of reduced graphene oxide (RGO). Laser-induced dehydrogenation of hydrogenated graphene can also be used for this purpose. All such laser-induced transformations are associated with thermal effects. RGO emits blue light on UV excitation, a feature that can be used to generate white light in combination with a yellow emitter. RGO as well as graphene nanoribbons are excellent detectors of infra-red radiation while RGO is a good UV detector.