328 resultados para Hybrid material


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Wavelet coefficients based on spatial wavelets are used as damage indicators to identify the damage location as well as the size of the damage in a laminated composite beam with localized matrix cracks. A finite element model of the composite beam is used in conjunction with a matrix crack based damage model to simulate the damaged composite beam structure. The modes of vibration of the beam are analyzed using the wavelet transform in order to identify the location and the extent of the damage by sensing the local perturbations at the damage locations. The location of the damage is identified by a sudden change in spatial distribution of wavelet coefficients. Monte Carlo Simulations (MCS) are used to investigate the effect of ply level uncertainty in composite material properties such as ply longitudinal stiffness, transverse stiffness, shear modulus and Poisson's ratio on damage detection parameter, wavelet coefficient. In this study, numerical simulations are done for single and multiple damage cases. It is observed that spatial wavelets can be used as a reliable damage detection tool for composite beams with localized matrix cracks which can result from low velocity impact damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on the design, development, and performance study of a packaged piezoelectric thin film impact sensor, and its potential application in non-destructive material discrimination. The impact sensing element employed was a thin circular diaphragm of flexible Phynox alloy. Piezoelectric ZnO thin film as an impact sensing layer was deposited on to the Phynox alloy diaphragm by RF reactive magnetron sputtering. Deposited ZnO thin film was characterized by X-ray diffraction (XRD), Atomic Force Microscopy (AFM), and Scanning Electron Microscopy (SEM) techniques. The d(31) piezoelectric coefficient value of ZnO thin film was 4.7 pm V-1, as measured by 4-point bending method. ZnO film deposited diaphragm based sensing element was properly packaged in a suitable housing made of High Density Polyethylene (HDPE) material. Packaged impact sensor was used in an experimental set-up, which was designed and developed in-house for non-destructive material discrimination studies. Materials of different densities (iron, glass, wood, and plastic) were used as test specimens for material discrimination studies. The analysis of output voltage waveforms obtained reveals lots of valuable information about the impacted material. Impact sensor was able to discriminate the test materials on the basis of the difference in their densities. The output response of packaged impact sensor shows high linearity and repeatability. The packaged impact sensor discussed in this paper is highly sensitive, reliable, and cost-effective.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An efficient parallelization algorithm for the Fast Multipole Method which aims to alleviate the parallelization bottleneck arising from lower job-count closer to root levels is presented. An electrostatic problem of 12 million non-uniformly distributed mesh elements is solved with 80-85% parallel efficiency in matrix setup and matrix-vector product using 60GB and 16 threads on shared memory architecture.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystals of a new nonlinear optical (NLO) material, viz., L-histidinium 2-nitrobenzoate (LHNB) (1) were grown by slow evaporation of an aqueous solution containing equimolar concentrations of L-histidine and 2-nitrobenzoic acid. The structure of the title compound which crystallizes in the non-centrosymmetric monoclinic space group P2(1) was elucidated using single crystal X-ray intensity data. The UV-Vis-NIR spectrum of 1 reveals its transparent nature while the vibrational spectra confirm the presence of the functional groups in 1. The thermal stability and second harmonic generation (SHG) conversion efficiency of 1 were also investigated. (C) 2012 Elsevier GmbH. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report on multifunctional devices based on CNT arrays-ZnO nanowires hybrid architectures. The hybrid structure exhibit excellent high current Schottky like behavior with ZnO as p-type and an ideality factor close to the ideal value. Further the CNT-ZnO hybrid structures can be used as high current p-type field effect transistors that can deliver currents of the order of milliamperes and also can be used as ultraviolet detectors with controllable current on-off ratio and response time. The p-type nature of ZnO and possible mechanism for the rectifying characteristics of CNT-ZnO has been presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report a new protocol for the synthesis of M@rGO (M = Au, Pt, Pd, Ag and rGO = reduced graphene oxide) hybrid nanostructures at room temperature in Zn-acid medium. The roles of Zn-acid are to reduce the GO by generated hydrogen and the deposition of metal nanoparticles on rGO by galvanic replacement reaction between Zn and Mn+.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cu2CoSnS4 (CCTS) quaternary semiconducting nanoparticles with size distribution from 20 nm to 60 nm were synthesized by one-pot low temperature time and surfactant dependent hydrothermal route. Nanoparticles were characterized structurally and optically. Excitation dependent fluorescence exhibited a dynamic stoke shift referring to the Red-Edge-Effect with peak shifting by a greater magnitude (>100 nm) towards red side, in all the samples. Hybrid devices, fabricated from CCTS nanoparticle inorganic counterparts benefitting from the conjugation of organic P3HT polymer matrix, were demonstrated for photodetection under infra-red and A. M 1.5 solar light illuminations. Faster rise and decay constants of 37 ms and 166 ms, with one order photocurrent amplification from 1.6 x 10(-6) A in the dark to 6.55 x 10(-5) A, upon the 18.50 mW cm(-2) IR lamp illumination, make CCTS a potential candidate for photodetector and photovoltaic applications. (C) 2013 AIP Publishing LLC.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lithium-rich manganese oxide (Li2MnO3) is prepared by reverse microemulsion method employing Pluronic acid (P123) as a soft template and studied as a positive electrode material. The as-prepared sample possesses good crystalline structure with a broadly distributed mesoporosity but low surface area. As expected, cyclic voltammetry and charge-discharge data indicate poor electrochemical activity. However, the sample gains surface area with narrowly distributed mesoporosity and also electrochemical activity after treating in 4 M H2SO4. A discharge capacity of about 160 mAh g(-1) is obtained. When the acid-treated sample is heated at 300 A degrees C, the resulting porous sample with a large surface area and dual porosity provides a discharge capacity of 240 mAh g(-1). The rate capability study suggests that the sample provides about 150 mAh g(-1) at a specific discharge current of 1.25 A g(-1). Although the cycling stability is poor, the high rate capability is attributed to porous nature of the material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Combining the electronic properties of graphene(1,2) and molybdenum disulphide (MoS2)(3-6) in hybrid heterostructures offers the possibility to create devices with various functionalities. Electronic logic and memory devices have already been constructed from graphene-MoS2 hybrids(7,8), but they do not make use of the photosensitivity of MoS2, which arises from its optical-range bandgap(9). Here, we demonstrate that graphene-on-MoS2 binary heterostructures display remarkable dual optoelectronic functionality, including highly sensitive photodetection and gate-tunable persistent photoconductivity. The responsivity of the hybrids was found to be nearly 1 x 10(10) A W-1 at 130 K and 5 x 10(8) A W-1 at room temperature, making them the most sensitive graphene-based photodetectors. When subjected to time-dependent photoillumination, the hybrids could also function as a rewritable optoelectronic switch or memory, where the persistent state shows almost no relaxation or decay within experimental timescales, indicating near-perfect charge retention. These effects can be quantitatively explained by gate-tunable charge exchange between the graphene and MoS2 layers, and may lead to new graphene-based optoelectronic devices that are naturally scalable for large-area applications at room temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energy harvesting sensor (EHS) nodes provide an attractive and green solution to the problem of limited lifetime of wireless sensor networks (WSNs). Unlike a conventional node that uses a non-rechargeable battery and dies once it runs out of energy, an EHS node can harvest energy from the environment and replenish its rechargeable battery. We consider hybrid WSNs that comprise of both EHS and conventional nodes; these arise when legacy WSNs are upgraded or due to EHS deployment cost issues. We compare conventional and hybrid WSNs on the basis of a new and insightful performance metric called k-outage duration, which captures the inability of the nodes to transmit data either due to lack of sufficient battery energy or wireless fading. The metric overcomes the problem of defining lifetime in networks with EHS nodes, which never die but are occasionally unable to transmit due to lack of sufficient battery energy. It also accounts for the effect of wireless channel fading on the ability of the WSN to transmit data. We develop two novel, tight, and computationally simple bounds for evaluating the k-outage duration. Our results show that increasing the number of EHS nodes has a markedly different effect on the k-outage duration than increasing the number of conventional nodes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Suitability of substrate-integrated lead-carbon hybrid ultracapacitors for low-power back-up applications is studied. A practical application that provides 30 W power back-up to low-power medical gadgets for use in grid-power-deficient rural areas is presented. An ultracapacitor bank is designed for this application and the sizing calculations are provided. Experimental validation and results are also discussed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose a framework for developing and reasoning about hybrid systems that are comprised of a plant with multiple controllers, each of which controls the plant intermittently. The framework is based on the notion of a ``conflict tolerant'' specification for a controller, and provides a modular way of developing and reasoning about such systems. We propose a novel mechanism of defining conflict-tolerant specifications for general hybrid systems, using ``acceptor'' and ``advisor'' components. We also give a decision procedure for verifying whether a controller satisfies its conflict-tolerant specification, in the special case when the components are modeled using initialized rectangular hybrid automata.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two-dimensional (2D) nanosheets obtained by exfoliating inorganic layered crystals have emerged as a new class of materials with unique attributes. One of the critical challenges is to develop robust and versatile methods for creating new nanostructures from these 2D-nanosheets. Here we report the delamination of layered materials that belonging to two different classes - the cationic clay, montmorillonite, and the anionic clay, hydrotalcite - by intercalation of appropriate ionic surfactants followed by dispersion in a non-polar solvent. The solids are delaminated to single layers of atomic thickness with the ionic surfactants remaining tethered to the inorganic and consequently the nanosheets are electrically neutral. We then show that when dispersions of the two solids are mixed the exfoliated sheets self-assemble as a new layered solid with periodically alternating hydrotalcite and montmorillonite layers. The procedure outlined here is easily extended to other layered solids for creating new superstructures from 2D-nanosheets by self-assembly.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new hybrid multilevel power converter topology is presented in this paper. The proposed power converter topology uses only one DC source and floating capacitors charged to asymmetrical voltage levels, are used for generating different voltage levels. The SVPWM based control strategy used in this converter maintains the capacitor voltages at the required levels in the entire modulation range including the over-modulation region. For the voltage levels: nine and above, the number of components required in the proposed topology is significantly lower, compared to the conventional multilevel inverter topologies. The number of capacitors required in this topology reduces drastically compared to the conventional flying capacitor topology, when the number of levels in the inverter output increases. This topology has better fault tolerance, as it is capable of operating with reduced number of levels, in the entire modulation range, in the event of any failure in the H-bridges. The transient as well as the steady state performance of the nine-level version of the proposed topology is experimentally verified in the entire modulation range including the over-modulation region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The multi-component nanomaterials combine the individual properties and give rise to emergent phenomenon. Optical excitations in such hybrid nonmaterial's ( for example Exciton in semiconductor quantum dots and Plasmon in Metal nanomaterials) undergo strong weak electromagnetic coupling. Such exciton-plasmon interactions allow design of absorption and emission properties, control of nanoscale energy-transfer processes, and creation of new excitations in the strong coupling regime.This Exciton plasmon interaction in hybrid nanomaterial can lead to both enhancement in the emission as well as quenching. In this work we prepared close-packed hybrid monolayer of thiol capped CdSe and gold nanoparticles. They exhibit both the Quenching and enhancements the in PL emission.The systematic variance of PL from such hybrid nanomaterials monolayer is studied by tuning the Number ratio of Gold per Quantum dots, the surface density of QDs and the spectral overlap of emission spectrum of QD and absorption spectrum of Gold nanoparticles. Role of Localized surface Plasmon which not only leads to quenching but strong enhancements as well, is explored.