302 resultados para Binary Image Representation
Resumo:
Flood is one of the detrimental hydro-meteorological threats to mankind. This compels very efficient flood assessment models. In this paper, we propose remote sensing based flood assessment using Synthetic Aperture Radar (SAR) image because of its imperviousness to unfavourable weather conditions. However, they suffer from the speckle noise. Hence, the processing of SAR image is applied in two stages: speckle removal filters and image segmentation methods for flood mapping. The speckle noise has been reduced with the help of Lee, Frost and Gamma MAP filters. A performance comparison of these speckle removal filters is presented. From the results obtained, we deduce that the Gamma MAP is reliable. The selected Gamma MAP filtered image is segmented using Gray Level Co-occurrence Matrix (GLCM) and Mean Shift Segmentation (MSS). The GLCM is a texture analysis method that separates the image pixels into water and non-water groups based on their spectral feature whereas MSS is a gradient ascent method, here segmentation is carried out using spectral and spatial information. As test case, Kosi river flood is considered in our study. From the segmentation result of both these methods are comprehensively analysed and concluded that the MSS is efficient for flood mapping.
Resumo:
Experimental and simulation studies have uncovered at least two anomalous concentration regimes in water-dimethyl sulfoxide (DMSO) binary mixture whose precise origin has remained a subject of debate. In order to facilitate time domain experimental investigation of the dynamics of such binary mixtures, we explore strength or extent of influence of these anomalies in dipolar solvation dynamics by carrying out long molecular dynamics simulations over a wide range of DMSO concentration. The solvation time correlation function so calculated indeed displays strong composition dependent anomalies, reflected in pronounced non-exponential kinetics and non-monotonous composition dependence of the average solvation time constant. In particular, we find remarkable slow-down in the solvation dynamics around 10%-20% and 35%-50% mole percentage. We investigate microscopic origin of these two anomalies. The population distribution analyses of different structural morphology elucidate that these two slowing down are reflections of intriguing structural transformations in water-DMSO mixture. The structural transformations themselves can be explained in terms of a change in the relative coordination number of DMSO and water molecules, from 1DMSO:2H(2)O to 1H(2)O:1DMSO and 1H(2)O:2DMSO complex formation. Thus, while the emergence of first slow down (at 15% DMSO mole percentage) is due to the percolation among DMSO molecules supported by the water molecules (whose percolating network remains largely unaffected), the 2nd anomaly (centered on 40%-50%) is due to the formation of the network structure where the unit of 1DMSO:1H(2)O and 2DMSO:1H(2)O dominates to give rise to rich dynamical features. Through an analysis of partial solvation dynamics an interesting negative cross-correlation between water and DMSO is observed that makes an important contribution to relaxation at intermediate to longer times.
Resumo:
Important diffusion parameters, such as-parabolic growth constant, integrated diffusivity, ratio of intrinsic diffusivities of species Ni and Sn, Kirkendall marker velocity and the activation energy for diffusion kinetics of binary Ni3Sn4 phase have been investigated with the help of incremental diffusion couple technique (Sn/Ni0.57Sn0.43) in the temperature range 200-150 degrees C. Low activation energy extracted from Arrhenius plot indicates grain boundary controlled diffusion process. The species Sn is three times faster than Ni at 200 degrees C. Further, the activation energy of Sn tracer diffusivity is greater than that of Ni.
Resumo:
Typical image-guided diffuse optical tomographic image reconstruction procedures involve reduction of the number of optical parameters to be reconstructed equal to the number of distinct regions identified in the structural information provided by the traditional imaging modality. This makes the image reconstruction problem less ill-posed compared to traditional underdetermined cases. Still, the methods that are deployed in this case are same as those used for traditional diffuse optical image reconstruction, which involves a regularization term as well as computation of the Jacobian. A gradient-free Nelder-Mead simplex method is proposed here to perform the image reconstruction procedure and is shown to provide solutions that closely match ones obtained using established methods, even in highly noisy data. The proposed method also has the distinct advantage of being more efficient owing to being regularization free, involving only repeated forward calculations. (C) 2013 Society of Photo-Optical Instrumentation Engineers (SPIE)
Resumo:
In order to reduce the motion artifacts in DSA, non-rigid image registration is commonly used before subtracting the mask from the contrast image. Since DSA registration requires a set of spatially non-uniform control points, a conventional MRF model is not very efficient. In this paper, we introduce the concept of pivotal and non-pivotal control points to address this, and propose a non-uniform MRF for DSA registration. We use quad-trees in a novel way to generate the non-uniform grid of control points. Our MRF formulation produces a smooth displacement field and therefore results in better artifact reduction than that of registering the control points independently. We achieve improved computational performance using pivotal control points without compromising on the artifact reduction. We have tested our approach using several clinical data sets, and have presented the results of quantitative analysis, clinical assessment and performance improvement on a GPU. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
The solidification pathways of Nb rich Nb-Si alloys when processed under non-equilibrium conditions require understanding. Continuing with our earlier work on alloying additions in single eutectic composition 1,2], we report a detailed characterization of the microstructures of Nb-Si binary alloys with wide composition range (10-25 at% Si). The alloys are processed using chilled copper mould suction casting. This has allowed us to correlate the evolution of microstructure and phases with different possible solidification pathways. Finally these are correlated with mechanical properties through studies on deformation using mechanical testing under indentation and compressive loads. It is shown that microstructure modification can significantly influence the plasticity of these alloys.
Resumo:
A binary mixture of oppositely charged colloidal particles can self-assemble into either a substitutionally ordered or substitutionally disordered crystalline phase depending on the nature and strength of interactions among the particles. An earlier study had mapped out favorable inter-particle interactions for the formation of substitutionally ordered crystalline phases from a fluid phase using Monte Carlo molecular simulations along with the Gibbs-Duhem integration technique. In this paper, those studies are extended to determine the effect of fluid phase composition on formation of substitutionally ordered solid phases.
Resumo:
We propose and experimentally demonstrate a three-dimensional (3D) image reconstruction methodology based on Taylor series approximation (TSA) in a Bayesian image reconstruction formulation. TSA incorporates the requirement of analyticity in the image domain, and acts as a finite impulse response filter. This technique is validated on images obtained from widefield, confocal laser scanning fluorescence microscopy and two-photon excited 4pi (2PE-4pi) fluorescence microscopy. Studies on simulated 3D objects, mitochondria-tagged yeast cells (labeled with Mitotracker Orange) and mitochondrial networks (tagged with Green fluorescent protein) show a signal-to-background improvement of 40% and resolution enhancement from 360 to 240 nm. This technique can easily be extended to other imaging modalities (single plane illumination microscopy (SPIM), individual molecule localization SPIM, stimulated emission depletion microscopy and its variants).
Resumo:
This paper presents classification, representation and extraction of deformation features in sheet-metal parts. The thickness is constant for these shape features and hence these are also referred to as constant thickness features. The deformation feature is represented as a set of faces with a characteristic arrangement among the faces. Deformation of the base-sheet or forming of material creates Bends and Walls with respect to a base-sheet or a reference plane. These are referred to as Basic Deformation Features (BDFs). Compound deformation features having two or more BDFs are defined as characteristic combinations of Bends and Walls and represented as a graph called Basic Deformation Features Graph (BDFG). The graph, therefore, represents a compound deformation feature uniquely. The characteristic arrangement of the faces and type of bends belonging to the feature decide the type and nature of the deformation feature. Algorithms have been developed to extract and identify deformation features from a CAD model of sheet-metal parts. The proposed algorithm does not require folding and unfolding of the part as intermediate steps to recognize deformation features. Representations of typical features are illustrated and results of extracting these deformation features from typical sheet metal parts are presented and discussed. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
A theoretical analysis is carried out to observe the influence of important flow parameters such as Nusselt number and Sherwood number on the tip speed of an equiaxed dendrite growing in a convecting alloy melt. The effect of thermal and solutal transfer at the interface due to convection is equated to an undercooling of the melt, and an expression is derived for this equivalent undercooling in terms of the flow Nusselt number and Sherwood number. Results for the equivalent undercooling are compared with corresponding numerical values obtained by performing simulations based on the enthalpy method. This method represents a relatively simple procedure to analyze the effects of melt convection on the growth rate of dendrites. (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
Purpose-In the present work, a numerical method, based on the well established enthalpy technique, is developed to simulate the growth of binary alloy equiaxed dendrites in presence of melt convection. The paper aims to discuss these issues. Design/methodology/approach-The principle of volume-averaging is used to formulate the governing equations (mass, momentum, energy and species conservation) which are solved using a coupled explicit-implicit method. The velocity and pressure fields are obtained using a fully implicit finite volume approach whereas the energy and species conservation equations are solved explicitly to obtain the enthalpy and solute concentration fields. As a model problem, simulation of the growth of a single crystal in a two-dimensional cavity filled with an undercooled melt is performed. Findings-Comparison of the simulation results with available solutions obtained using level set method and the phase field method shows good agreement. The effects of melt flow on dendrite growth rate and solute distribution along the solid-liquid interface are studied. A faster growth rate of the upstream dendrite arm in case of binary alloys is observed, which can be attributed to the enhanced heat transfer due to convection as well as lower solute pile-up at the solid-liquid interface. Subsequently, the influence of thermal and solutal Peclet number and undercooling on the dendrite tip velocity is investigated. Originality/value-As the present enthalpy based microscopic solidification model with melt convection is based on a framework similar to popularly used enthalpy models at the macroscopic scale, it lays the foundation to develop effective multiscale solidification.
Resumo:
In this paper, we present a machine learning approach for subject independent human action recognition using depth camera, emphasizing the importance of depth in recognition of actions. The proposed approach uses the flow information of all 3 dimensions to classify an action. In our approach, we have obtained the 2-D optical flow and used it along with the depth image to obtain the depth flow (Z motion vectors). The obtained flow captures the dynamics of the actions in space time. Feature vectors are obtained by averaging the 3-D motion over a grid laid over the silhouette in a hierarchical fashion. These hierarchical fine to coarse windows capture the motion dynamics of the object at various scales. The extracted features are used to train a Meta-cognitive Radial Basis Function Network (McRBFN) that uses a Projection Based Learning (PBL) algorithm, referred to as PBL-McRBFN, henceforth. PBL-McRBFN begins with zero hidden neurons and builds the network based on the best human learning strategy, namely, self-regulated learning in a meta-cognitive environment. When a sample is used for learning, PBLMcRBFN uses the sample overlapping conditions, and a projection based learning algorithm to estimate the parameters of the network. The performance of PBL-McRBFN is compared to that of a Support Vector Machine (SVM) and Extreme Learning Machine (ELM) classifiers with representation of every person and action in the training and testing datasets. Performance study shows that PBL-McRBFN outperforms these classifiers in recognizing actions in 3-D. Further, a subject-independent study is conducted by leave-one-subject-out strategy and its generalization performance is tested. It is observed from the subject-independent study that McRBFN is capable of generalizing actions accurately. The performance of the proposed approach is benchmarked with Video Analytics Lab (VAL) dataset and Berkeley Multimodal Human Action Database (MHAD). (C) 2013 Elsevier Ltd. All rights reserved.
Resumo:
In aqueous binary mixtures, amphiphilic solutes such as dimethylsulfoxide (DMSO), ethanol, tertbutyl alcohol (TBA), etc., are known to form aggregates (or large clusters) at small to intermediate solute concentrations. These aggregates are transient in nature. Although the system remains homogeneous on macroscopic length and time scales, the microheterogeneous aggregation may profoundly affect the properties of the mixture in several distinct ways, particularly if the survival times of the aggregates are longer than density relaxation times of the binary liquid. Here we propose a theoretical scheme to quantify the lifetime and thus the stability of these microheterogeneous clusters, and apply the scheme to calculate the same for water-ethanol, water-DMSO, and water-TBA mixtures. We show that the lifetime of these clusters can range from less than a picosecond (ps) for ethanol clusters to few tens of ps for DMSO and TBA clusters. This helps explaining the absence of a strong composition dependent anomaly in water-ethanol mixtures but the presence of the same in water-DMSO and water-TBA mixtures. (C) 2013 AIP Publishing LLC.
Resumo:
Imaging thick specimen at a large penetration depth is a challenge in biophysics and material science. Refractive index mismatch results in spherical aberration that is responsible for streaking artifacts, while Poissonian nature of photon emission and scattering introduces noise in the acquired three-dimensional image. To overcome these unwanted artifacts, we introduced a two-fold approach: first, point-spread function modeling with correction for spherical aberration and second, employing maximum-likelihood reconstruction technique to eliminate noise. Experimental results on fluorescent nano-beads and fluorescently coated yeast cells (encaged in Agarose gel) shows substantial minimization of artifacts. The noise is substantially suppressed, whereas the side-lobes (generated by streaking effect) drops by 48.6% as compared to raw data at a depth of 150 mu m. Proposed imaging technique can be integrated to sophisticated fluorescence imaging techniques for rendering high resolution beyond 150 mu m mark. (C) 2013 AIP Publishing LLC.
Resumo:
There is a strong relation between sparse signal recovery and error control coding. It is known that burst errors are block sparse in nature. So, here we attempt to solve burst error correction problem using block sparse signal recovery methods. We construct partial Fourier based encoding and decoding matrices using results on difference sets. These constructions offer guaranteed and efficient error correction when used in conjunction with reconstruction algorithms which exploit block sparsity.